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Appendix A: Additional Figures and Tables

A.1. Additional figures
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Figure A.1: Vintage effects of population

Notes: This figure presents the estimated vintage effects after estimating equation (2) using data at the

municipality level for 2006. It presents the coefficients for municipality population. Other coefficients are

presented in Figure 2 of the main text. Dark dots represent the point estimates for each coefficient and light

gray dots correspond to the 95% confidence intervals using robust standard errors. The vertical line marks

the division between 1992 and 1993 vintages.

1
3

1
4

1
5

1
6

1975 1985 1995 1975 1985 1995 1975 1985 1995

1991 1995 1997

lo
g
 P

ri
c
e

Vintage

Figure A.2: Price of a second-hand Toyota Corolla

Notes: The unit of observation in this figure corresponds to a Toyota Corolla newspaper offer published in

October, November and December of 1991, 1995 and 1997 respectively. The vertical line separates offers of

cars vintage pre and post-1992. The lines are best linear predictor functions of price (in logs) and vintage at

each side of the discontinuity.
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Figure A.3: Transition phase: Sales of new cars

Notes: This figure shows the number of new cars (q0) that are sold in every period in Santiago and the rest

of the country after the implementation of a regime of Pigouvian taxes. t = 0 corresponds to the time when

the tax policy is implemented. Values for t < 0 correspond to the steady state under no intervention.

(a) Santiago (b) Rest of the country

Figure A.4: Distributional implications of the optimal driving restriction

Notes: This figure shows consumer welfare under two different regimes: no interventions and the optimal

driving restriction.
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(a) INCOME coefficients
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(b) DR coefficients

Figure A.5: Vintage effects of driving restrictions, income, and population (no correction)

Notes: This figure presents the estimated vintage effects after estimating equation (1) using data at the

municipality level for 2006. Panel (a) presents the coefficients for municipality income, and Panel (b) for the

effect of the driving restriction. Dark dots represent the point estimates for each coefficient and light gray dots

correspond to the 95% confidence intervals using robust standard errors. The vertical line marks the division

between 1992 and 1993 vintages. This figure differs from Figure 2 in the paper in that here we use the original

permit-circulation data without correcting for a small number of vintage 1993, 1994 and 1995 not equipped

with converters. Obviously, none of these models were in Santiago.
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A.2. Additional tables

Table A.1: The effects of the driving restriction on the share of cars for different contiguous
vintages

88-89 89-90 90-91 91-92 92-93 93-94 94-95 95-96
DRi 0.0702 0.125∗∗ 0.0637 -0.0211 -1.184∗∗∗ 0.0882 0.131∗∗∗ 0.0659

(0.050) (0.056) (0.085) (0.070) (0.106) (0.058) (0.045) (0.061)

Controls Yes+ Yes+ Yes+ Yes+ Yes+ Yes+ Yes+ Yes+

Obs 326 331 331 332 332 332 329 326
R2 0.107 0.134 0.166 0.079 0.492 0.201 0.047 0.088

Notes: OLS regressions with one observation per municipality. The dependent variable corresponds to
log(qτ )/ log(qτ+1), where qiτ is the total number of cars of vintage τ found in municipality i in 2006. Standard
errors are calculated via block bootstrap at the province level (53 provinces in total). Municipality controls
include, population, income per-capita, quadratic income per-capita, coefficient of variation of income per
capita, urbanization ratio, a quadratic function of distance to Santiago, and dummies for municipalities in
northern and far away regions. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.2: The effects of having a catalytic converter on the price of used cars

(1) (2) (3) (4)
FIAT 0.031∗∗∗ 0.027∗∗∗ 0.034∗∗∗ 0.027∗∗∗

UNO (0.006) [5220] (0.006) [4705] (0.007) [4705] (0.006) [4705]

HONDA 0.127∗∗∗ 0.105∗∗∗ 0.121∗∗∗ 0.122∗∗∗

ACCORD (0.008) [10583] (0.011) [3978] (0.011) [3978] (0.011) [3978]

HONDA 0.031∗∗∗ 0.069∗∗∗ 0.054∗∗∗ 0.05∗∗∗

CIVIC (0.007) [7281] (0.007) [5655] (0.007) [5655] (0.007) [5655]

MAZDA 0.031∗∗∗ 0.054∗∗∗ 0.055∗∗∗ 0.052∗∗∗

323 (0.006) [8377] (0.005) [5576] (0.005) [5576] (0.005) [5576]

PEUGEOT 0.033∗∗∗ 0.025∗∗∗ 0.024∗∗∗ 0.021∗∗∗

205 (0.007) [4285] (0.008) [3716] (0.008) [3716] (0.008) [3716]

PEUGEOT 0.103∗∗∗ 0.138∗∗∗ 0.116∗∗∗ 0.114∗∗∗

505 (0.008) [11665] (0.009) [5115] (0.01) [5115] (0.01) [5115]

TOYOTA 0.094∗∗∗ 0.17∗∗∗ 0.174∗∗∗ 0.175∗∗∗

COROLLA (0.011) [9385] (0.01) [6564] (0.012) [6564] (0.012) [6564]

Age, Model and
Yes Yes Yes Yes

Date f.e.
g(τ) No Quality Flexible line Flexible age f.e.

Notes: The unit of observation corresponds to a car offer published in “El Mercurio”, Chile’s main newspaper,
the first Sunday of every month between 1988 and 2000. Each row corresponds to estimates of the effect of
having a catalytic converter in the context of equation (3) using different specifications for different models.
Standard errors clustered by ad date are presented in parentheses. The number of observations in each
specification are presented in squared brackets. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.3: Prices in Santiago and the rest of the country (2013)

(1) (2)
Santiago -0.0263∗∗ -0.0198∗

(0.009) (0.009)

Santiago × pre-1993 -0.0277∗∗∗

(0.005)
Vintage f.e. yes yes
Date f.e. yes yes
Model f.e. yes yes
Observations 53915 53915
R2 0.717 0.717

Notes: The unit of observation is a car sell offer posted in “Chileautos”, an online
platform, during October of 2013 of vintages 1990 to 1995. The dependent variable is
the posted price of the car (in logs). Santiagoi is a dummy that takes the value of 1 is
the offer is the car is being sold in Santiago. pre-1993i takes the value of 1 if the car
was built before 1993. We control by vintage, date of the offer and model fixed effects.
Standard errors, which are calculated via block bootstrap clustering at the week-region
level, are presented in parenthesis. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A.4: Survival rates and external costs per mile

Age (a) 0 1 2 3 4 5 6
γa 0.9966 0.9966 0.9966 0.9434 0.8267 0.7226 0.5828

εra 0.0244 0.0397 0.1011 0.2878 0.8225 1.4796 2.1367

εnra 0.0028 0.0046 0.0118 0.0336 0.0960 0.1726 0.2493

Notes: Survival rates are calculated using constrained OLS. The unit of observation
is the total number of cars of a given vintage τ found in the country on a given year
t (yta), which we use in the regression yta = γay

t+1
a+1 + εta, along with imposing γa ≤ 1

and γa+1 ≤ γa. External costs are estimated following the procedure described in
section 4.2 of the paper.
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Table A.5: The effects of the driving restriction on the share of cars for contiguous vintages
(no correction)

92-93 92-93 92-93 91-92 93-94
DRi -0.900∗∗∗ -0.874∗∗∗ -0.801∗∗∗ -0.0211 -0.0560

(0.065) (0.075) (0.098) (0.067) (0.059)

Controls No Yes Yes+ Yes+ Yes+

Observations 332 332 332 332 332
R2 0.300 0.310 0.335 0.079 0.222

Notes: OLS regressions with one observation per municipality. The dependent variable corresponds to
log(qτ )/ log(qτ+1), where qiτ is the total number of cars of vintage τ found in municipality i in 2006. The
first three columns correspond to the case of τ = 1992, while columns 4 and 5 correspond to τ = 1991 and
τ = 1993, respectively. Standard errors are calculated via block bootstrap at the province level (53 provinces
in total). Municipality controls in column 2 include income per capita and population. Municipality controls
in columns 3 to 5 include the same controls of column 2 plus quadratic income per-capita, coefficient of vari-
ation of income per capita, urbanization ratio, a quadratic function of distance to Santiago, and dummies for
municipalities in northern and far away regions. This table differs from Table 1 in the paper in that here we
do not correct for a small number of models vintage 1993, 1994 and 1995 not equipped with converters. ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Appendix B: Additional material for Section 2

B.1. Car fleet data

The main database to study changes in fleet composition comes from vehicle circulation per-

mits at the municipality level collected by the National Statistics Bureau. In March every

year, each car owner is required to obtain a circulation permit upon payment of an annual fee

to her home municipality. We use data for 332 municipalities for the 2006-2012 period. The

data includes the number of cars of each vintage by municipality for each year, thus capturing

the age profile of the fleet of cars in municipalities around March of each year. The data is

available only since 2006, 13 years after the implementation of the 1992 reform.

We also use information for a vector of controls at the municipality level, which include,

among others, total population, urbanization rate, mean and coefficient of variation of in-

come per capita at the municipality level, and some additional geographic controls related to

location.

Notice that some of the post-1992 cars that circulated outside Santiago were not equipped

with a converter. As we do not have information on their exact locations, we correct our

estimates using the information from Onursal and Gautam (1997, p. 177), which reports that

only 79, 87.6, and 94.8% of all new models registered in 1993, 1994, and 1995, respectively,

came with a catalytic converter. If we run the regressions with the raw data (i.e. without

applying this correction), our results are qualitatively similar (see Table A.5 and Figure A.5).
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B.2. Regression discontinuity design for effects on fleet composition

We implement a regression discontinuity design for cars in Santiago (the treated region) with

vintage (τ) as the running variable, where we consider τ ≥ 1993 as the treated vintages. It is

worth noting that implementing an RDD is challenging in our context. As shown in Figure 1,

there is a jump in the stock of cars in Santiago between vintages 1992 and 1993, but similar

jumps can be found in other pair of vintages (e.g., for the 1998 and 1999 vintages). These

jumps are driven by national level shocks affecting the total number of cars in the country

in specific years. To account for this, we first run a regression of the number of cars in each

municipality on vintage fixed effects using information for all the municipalities in 2006. By

construction, the average across municipalities of the residuals of this regression is 0 for each

vintage and therefore we will have a normalized version of the size of each vintage (in terms

of the number of cars). Then, we keep the municipalities located in Santiago and run a

regression discontinuity design on the residuals of the former regression. Following the usual

assumptions of RDDs, this estimator allows us to identify the local effect of the treatment on

the discontinuity (i.e., the difference in the stock of cars between the 1993 and 1992 vintages)

for municipalities in Santiago. We run a local linear regression using a uniform Kernel and a

bandwidth of three vintages at each side of the discontinuity to get an estimate of 1.222 and

a standard error of 0.201. The graphic implementation can be found in Figure B.1.1
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Figure B.1: Regression discontinuity design estimates for car fleet in treated municipalities
(Santiago)

Notes: The units of observation are municipalities affected by the driving restriction program. We follow the

procedure explained in section 2.1 of the paper. The point estimate of the RDD estimate is 1.222 and the

standard error is 0.201.

1Note that since our running variable is discrete in nature (i.e. vintage, measured in years), we do not follow
the existing literature in calculating the optimal bandwidth, as those methods are developed for assignment
variables with density, say, σ(x), where x is the running variable and σ(·) is continuous and bounded away
from zero (Calonico et al., 2014). Our results are robust to different bandwidths and Kernel choices.
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B.3. Second-car effect

In order to study the potential second-car effect of Santiago’s 1992 reform, we use the So-

cioeconomic Characterization Surveys (CASEN) for years 1998 and 2006. Despite these are

national surveys taken every two or three years to thousands of households, these are the only

two years when the surveys included detailed questions on car ownership that can be used for

our purpose here.

Figure B.2 presents histograms of households owning zero, one or more than one car for

each year. Whether in Santiago or in the rest of the country, the majority of households own

no car and less than 5 percent own more than one. This latter number already indicates that

this margin may not be of first order importance. It does suggest, though, that the fraction

of households owning more than one car is twice as large in Santiago as in the rest of the

country.
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Figure B.2: Histogram with numbers of cars per household

Notes: The figure shows the percentage of households owning 0, 1 or more than 1 car in Santiago and the rest

of the country. Panel (a) shows results for 1998, while panel (b) for 2006.

Since living in Santiago (and be affected by the driving restriction) is not the only vari-

able affecting purchasing decisions, we run different regressions to capture how the number

of cars owned by a household is affected by living in Santiago along with other household

characteristics such as income, assets, age, gender and employment status of the head of the

household, the composition of the household (in terms of number of members and also num-

ber of employed members), and the size of the municipality where household is located. We

employ two types of models to estimate the probability of owning a second car, conditional

on owning at least one (i.e., Pr[c > 1|c ≥ 1], where c is the number of cars in the household).

Results for the marginal effect of living in Santiago are presented in the first two rows of Table

B.1 for both OLS and probit models, respectively. Results indicate that living in Santiago

does not change the probability of having more than one car, after controlling for relevant
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variables. This means that the differences seen in Figure B.2 between Santiago and the rest

of the country are mostly driven by households characteristics other than location, mainly

income.

Table B.1: Effect of living in Santiago on having more than one car

1998 survey 2006 survey
OLS 0.0159 0.00999

(0.015) (0.014)

Probit 0.0103 0.00310
(0.014) (0.011)

Hurdle poisson-logit 0.062 0.0136
(0.081) (0.101)

Notes: The unit of observation is the household and the dependent variable is the number of cars in a
given household. We present only the marginal effects of living in Santiago but the models also include the
following variables: household characteristics related to income, assets, age, gender and employment status
of the head of the household, the composition of the household (in terms of number of members and also
number of employed members), and the size of the county in which the household is located. OLS and probit
estimations are on households with at least one car. The Hurdle poisson-logit model uses all the observations.
Observations are weighted using expansion factors. Standard errors, which are clustered at the municipality
level, are in parenthesis. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

The second model, a Poisson-logit hurdle model, takes a more structural approach. It is a

count model that combines a logit process for the generation of the extensive margin (owning

at least one car or not) and a Poisson process for the intensive margin (the actual number

of cars). The third row of Table B.1 presents the results of this hurdle model and again we

find a statistically insignificant effect of living in Santiago on the probability of owning more

than one car, conditional on having at least one. In all, these results show no indication of a

second-car effect; and if any, it fully evaporated shortly after policy implementation.
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B.4. Effect on car prices - Additional exercises

An alternative empirical strategy is to use a regression discontinuity design with τ as the

running variable and, as before, we consider τ ≥ 1993 for all models as the treated vintages.

Following the same approach used for the RDD for quantities in Section B.2, we start calcu-

lating residuals from a regression of log prices on date of the offer fixed effects, model fixed

effects, age of the car fixed effects, and our proxy for car quality. We do this for the pooled

sample and for each model. Thus, under the usual assumptions, this estimator identifies the

local effect of the treatment on the 92-93 discontinuity. Let βmRDD be this estimator. As in

the case of our estimates for the effects on quantities, we run a local linear regression using

a uniform kernel and a bandwidth of 3 vintages on each side of the discontinuity. We obtain

a point estimate of 0.061 with a standard deviation of 0.004 (see Figure B.3). This number

is remarkably similar to the estimate we find using our parametric approach in equation (3),

i.e., 0.065.
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Figure B.3: Regression discontinuity design estimates for the effect of a catalytic converter on
prices of used cars

Notes: The units of observation are car ads published in “El Mercurio”, Chile’s main newspaper, the first

Sunday of every month between 1988 and 2000. We follow the procedure explained in section 2.2 of the paper.

The estimates (standard errors) for each individual model are as follows: FIAT UNO: 0.005 (0.007), HONDA

ACCORD: 0.089 (0.012), HONDA CIVIC: 0.062 (0.008), MAZDA 323: 0.057 (0.005), PEUGEOT 205: 0.035

(0.009), PEUGEOT 505: 0.073 (0.011), TOYOTA COROLLA: 0.211 (0.024).

Finally, we run price regressions using newspaper ads for Honda Accords, exploiting the

fact that some pre-1993 models were already equipped with catalytic converters, and therefore,

exempted from the restriction. This exercise is important as one may argue that 1993 models

could be more expensive than 1992 models not because of the driving restriction, but because

of a discrete jump in quality or costs between these two vintages (note that this concern is

not relevant as long as our proxy for the quality of cars of different vintages is related to

the true variable). This is unlikely to be the case for models of the same make and of the
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same year. We exploit the fact that in many instances this feature of the car (i.e. having a

catalytic converter) was explicitly reported in the ads along with the price quote. So we run

the following cross-section regression

log(PHA,τ
i ) = βHAτ CONV ERTERi + εi (B.1)

where PHA,τ
i refers to the price of a Honda Accord of vintage τ , and CONV ERTERi is a

dummy that takes a value of one if the ad reports that the car has a catalytic converter. We

test for the effect of reporting a catalytic converter on the price offer by running four separate

OLS regressions for vintages 1991 through 1994 using ads published in October, November,

and December of 1995. This provides an additional test that exploits the fact that since

converters were required by law in all post-1992 models, reporting its existence in ads for

these models should make no difference.

This is precisely what we see in the last two columns of Table B.2, where having a catalytic

converter is not statistically different from zero. This contrasts with the catalytic premiums

observed in the first two columns of the table. Moreover, we can compare the estimate of βHAτ
with the estimate provided for the same model using our previous empirical strategies, as a

robustness check. Albeit somewhat larger, the 1991 and 1992 premiums are not that different

from the 12 log point premium reported in Table A.2 for the same model.

Table B.2: The effects of reporting a catalytic converter on the price of used Honda Accords

(1991) (1992) (1993) (1994)
CONVERTER 0.223∗∗∗ 0.189∗∗∗ 0.0206 -0.00487

(0.054) (0.035) (0.035) (0.010)

Constant 15.60∗∗∗ 15.68∗∗∗ 15.96∗∗∗ 16.40∗∗∗

(0.032) (0.034) (0.025) (0.010)
Observations 47 53 58 49
R2 0.245 0.309 0.006 0.001

Notes: Each observation corresponds to a Honda Accord newspaper-ad published in October, November and
December of 1995. The dependent variable is posted price of the car (in logs). We present the estimates of
a dummy that takes a value of 1 if the ad reports a catalytic converter is installed in the car in the context
of equation (4). Each column presents the results for the different car vintages. Robust standard errors are
presented in parenthesis. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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B.5. Proxy for car quality

To construct our proxy of car quality, we assume that prices of new cars are a good approxi-

mation of the cars’ intrinsic value. We see this assumption as particularly relevant for Chile,

where there are no car manufacturers and the import of used cars has been forbidden since

1985. Therefore, relative differences in prices of new cars depend on international prices and

do not depend on local demand shocks (in contrast to what happens in the second-hand mar-

ket, which operates as a close economy). Under that assumption, we construct our proxy for

the quality of the model of a specific vintage as follows. First, we run a regression of log prices

of all the ads in our sample against date of the offer fixed effects, model fixed effects and age

of the car fixed effects. Then, we average the residuals of that regression by vintage and model

using only new car offers. We use the averaged residuals as a proxy for the vintage-model

specific quality of a car.
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Appendix C: Additional material for Section 3

C.1. Proof of Proposition 1

The solution that maximizes (21) is defined by four variables: (i) the last driver to rent a new

car, θ∗0, (ii) the last driver to rent an old car, θ∗1, (iii) the travel schedule for new cars, x∗0(θ),

and (iv) the travel schedule for old cars x∗1(θ). From (21), the four first-order conditions that

determine these four variables are, respectively

0 = (c− 2v)fp(θ0)−
(

α

α− 1
θ∗0s0 [x∗0(θ∗0)](α−1)/α − (ψ0 + hpe0)x∗0(θ∗0)

)
fp(θ0)

+

(
α

α− 1
θ∗0s1 [x∗1(θ∗0)](α−1)/α − (ψ1 + hpe1)x∗1(θ∗0)

)
fp(θ0) (C.1)

0 = vfp(θ1)−
(

α

α− 1
θ∗1s1 [x∗1(θ∗1)](α−1)/α − (ψ1 + hpe1)x∗1(θ∗1)

)
fp(θ1) (C.2)

0 = θs0 [x∗0(θ)]−1/α − ψ0 − hpe0 (C.3)

0 = θs0 [x∗1(θ)]−1/α − ψ1 − hpe1 (C.4)

Now consider a driver θ of vehicle a ∈ {0, 1} facing a Pigouvian tax hpea per mile driven. It

is easy to see that this driver will drive x∗a(θ) miles, where x∗a(θ) is given by either (C.3) or

(C.4). Anticipating this, the driver that is indifferent between renting an old car and taking

public transport is θ∗1, as given by (C.2), and the one that is indifferent between renting an

old car and a new car is θ∗0, as given by (C.1).
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C.2. Proof of Proposition 3

The planner’s problem is to choose the restriction upon new vehicles, R0 ≤ 1, the number of

old vehicles in circulation, q1 (which can be interpreted as a restriction of R1− = 0 upon the

old vehicles that do not make the quota q1), and the restriction upon the old vehicles that

remain in circulation, R1+ ≤ 1, so as to maximize

W = −c[Fp(θ̄)− Fp(θ0)] + v[Fp(θ̄)− 2Fp(θ0) + Fp(θ1)]

+

∫ θ̄

θ0

R0

[
κ0(θs0)α − hpe0

(
θs0

ψ0

)α]
fp(θ)dθ

+

∫ θ0

θ1

R1+

[
κ1(θs1)α − hpe1

(
θs1

ψ1

)α]
fp(θ)dθ (C.5)

where θ0 is obtained from the indifference condition (between renting a new and an old vehicle)

R0κ0(θ0s0)α − p0 = R1+κ1(θ0s1)α − p1 (C.6)

and θ1 is a function of R1+ and q1 to be obtained from either the indifference condition

(between renting an old vehicle and taking public transport)

R1+κ1(θ1s1)α − p1 = 0

or the ”rationing” condition

q1 = Fp(θ0)− Fp(θ1)

whichever is greater. Using p0 = v − c and p1 = v, these cutoff functions can be written as

θ0 = θvr0 (R0, R1+) =

(
c− 2v

κ0R0sα0 − κ1R1+sα1

)1/α

and

θ1 = θvr1 (R1+, q1) = max

{
F−1
p (Fp(θ0)− q1),

(
v

κ1R1+sα1

)1/α
}

(C.7)

where superscript ”vr” denotes vintage restriction.

The determination of θ1 deserves some explanation. If it is optimal to set R1+ relatively

close to 1, the last driver to rent a car in the market will be θ′1, which solves R1+κ1(θ′1s1)α = v.

But when R1+ is close to 1 the social value created by this last driver is less than the scrappage

value of the car, that is

R1+κ1(θ′1s1)α − hpR1+e1

(
θ′1s1

ψ1

)α
< v
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There is an excess of old cars in the market, which the restriction design fixes by setting the

quota q1 so that the social value of the last car in the market is exactly equal to its outside

option. In other words, q1 must be such that θ1 = F−1
p (Fp(θ0)− q1) solves

R1+κ1(θ1s1)α − hpR1+e1

(
θ1s1

ψ1

)α
= v (C.8)

and θ1 > θ′1 (note we are relying on efficient rationing to sort out drivers because old cars

are all equal; in the general model we do not need this because old cars are differentiated by

vintage). As R1+ happens to be lower in the optimal design, the excess of old cars in the

market reduces and the quota q1 may not longer be needed. The exact point when this latter

occurs is when the private value of using a restricted old car is exactly equal to its social value

without restriction, that is, when

R1+κ1(θ1s1)α = κ1(θ1s1)α − hpe1

(
θ1s1

ψ

)α
= v

We consider both cases in the proof.

Consider first the case in which q1 is active, i.e., θ1 is dictated by the first term in (C.7).

Differentiating (C.5) with respect to R0 yields the first-order condition

0 ≤ (c− 2v)fp(θ
vr
0 (·))∂θ

vr
0 (·)
∂R0

+

∫ θ̄

θvr0

[
κ0(θs0)α − hpe0

(
θs0

ψ0

)α]
fp(θ)dθ

−R0

(
κ0(θvr0 s0)α − hpe0

(
θvr0 s0

ψ0

)α)
fp(θ

vr
0 (·))∂θ

vr
0 (·)
∂R0

+R1+

(
κ1(θvr0 s1)α − hpe1

(
θvr0 s1

ψ1

)α)
fp(θ

vr
0 (·))∂θ

vr
0 (·)
∂R0

(C.9)

And using the indifference condition (C.6), (C.9) reduces to

0 ≤
∫ θ̄

θvr0

[
κ0(θs0)α − hpe0

(
θs0

ψ0

)α]
fp(θ)dθ

+hp

(
R0e0

(
θvr0 s0

ψ0

)α
−R1+e1

(
θvr0 s1

ψ1

)α)
fp(θ

vr
0 (·))∂θ

vr
0 (·)
∂R0

(C.10)

On the other hand, differentiating (C.5) with respect to R1+ and using (C.6) and (C.8) yields

0 ≤
∫ θvr0

θvr1

[
κ1(θs1)α − hpe1

(
θs1

ψ1

)α]
fp(θ)dθ

+hp

(
R0e0

(
θvr0 s0

ψ0

)α
−R1+e1

(
θvr0 s1

ψ1

)α)
fp(θ

vr
0 (·))∂θ

vr
0 (·)

∂R1+

(C.11)
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Finally, differentiating (C.5) with respect to q1 yields precisely (C.8), which we already used

to reach (C.11).

The values of R0 and R1+ correspond to one of these three possibilities: (i) R0 < 1 and

R1+ < 1, (ii) R0 < 1 and R1+ = 1, and (iii) R0 = 1 and R1+ ≤ 1. If possibility (i) is true,

(C.10) and (C.11) must hold with equality. Since the first term in (C.10) is positive and

∂θvr0 (·)/∂R0 < 0, from (C.10) we have that R0e0 (θvr0 s0/ψ0)α − R1+e1 (θvr0 s1/ψ1)α > 0. But

since the first term in (C.11) is also positive and ∂θvr0 (·)/∂R1+ > 0, from (C.11) we have that

R0e0 (θvr0 s0/ψ0)α −R1+e1 (θvr0 s1/ψ1)α < 0; a contradiction.

If, on the other hand, (ii) is true, (C.10) must hold with equality and R0e0 (θvr0 s0/ψ0)α −
R1+e1 (θvr0 s1/ψ1)α > 0. Rearranging, this latter requires that

e1/ψ1

e0/ψ0

<

(
s0

s1

)α(
ψ1

ψ0

)α−1
R0

R1+

(C.12)

But from (25) in the paper we have that

g(α) ≡ 1− (1 + hpe1/ψ1)1−α

1− (1 + hpe0/ψ0)1−α >

(
s0

s1

)α(
ψ1

ψ0

)α−1

(C.13)

and from (C.13) and s0/s1 > 1 and ψ1/ψ0 ≥ 1 that (e1/ψ1)/(e0/ψ0) > 1. It is then easy to

see that g(α) is decreasing in α with limα↓1 g(α) = ln(1 + hpe1/ψ1)/ ln(1 + hpe0/ψ0) > 1 and

limα↑∞ g(α) = 1. But because

ln(1 + hpe1/ψ1)

ln(1 + hpe0/ψ0)
<
e1/ψ1

e0/ψ0

when (e1/ψ1)/(e0/ψ0) > 1, (C.12) and (C.13) enter in evident contradiction when R0 < 1 and

R1+ = 1. We are left with possibility (iii), i.e., R0 = 1 and R1+ ≤ 1, as the only possible

outcome. WhetherR1+ < 1 orR = 1 depends on whetherR0e0 (θvr0 s0/ψ0)α−R1+e1 (θvr0 s1/ψ0)α

is sufficiently negative.2

Consider now the second case in which q1 is not longer active, that is, R1+[κ1(θvr1 s1)α −
he1(θvr1 s1/ψ1)α)] ≥ v, where θvr1 is given by the second term in (C.7). This implies that there

2Note that the reason a lower e0 makes R1+ < 1 more likely is because R1+ < 1 encourages a wider
adoption of new cars, i.e., it leads to a lower θvr0 (R0, R1+). To be clear, making R1+ < 1 is by no means to
reduce rides in old cars, which are already socially beneficial given the definition of q1.
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is an additional term in the first-order condition associated to R1+, so (C.11) becomes

0 ≤
∫ θvr0

θvr1

[
κ1(θs1)α − hpe1

(
θs1

ψ1

)α]
fp(θ)dθ

+hp

(
R0e0

(
θvr0 s0

ψ0

)α
−R1+e1

(
θvr0 s1

ψ1

)α)
fp(θ

vr
0 (·))∂θ

vr
0 (·)

∂R1+

+

(
v −R1+κ1 (θvr1 s1)α + hpR1+e1

(
θvr1 s1

ψ1

)α)
fp(θ

vr
1 (·))∂θ

vr
1 (·)

∂R1+

(C.14)

Since ∂θvr1 (·)/∂R1+ < 0, this new term is positive, which again leaves possibility (iii) as the

only possible outcome. But in this case it is easy to see that the optimal design must have

R1+ < 1 necessarily, otherwise [κ1(θvr1 s1)α − hpe1(θvr1 s1/ψ1)α)] < v; a contradiction with the

assumption that q1 is not binding.
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C.3. Uniform driving restriction

Replacing

θ0 = θu0 (R) =

(
c− 2v

κ0Rsα0 − κ1Rsα1 )

)1/α

and

θ1 = θu1 (R) =

(
v

κ1Rsα1

)1/α

in (C.5) and differentiating with respect to R yields

0 ≤
∫ θ̄

θur0

[
κ0(θs0)α − hpe0

(
θs0

ψ0

)α]
fp(θ)dθ

+

∫ θur0

θur1

[
κ1(θs1)α − hpe1

(
θs1

ψ1

)α]
fp(θ)dθ

+hpR

(
e0

(
θur0 s0

ψ0

)α
− e1

(
θur0 s1

ψ1

)α)
fp(θ

ur
0 (·))∂θ

ur
0 (·)
∂R

+hpRe1

(
θvr1 s1

ψ1

)α
fp(θ

ur
1 (·))∂θ

ur
1 (·)
∂R

(C.15)

where superscript “ur” denotes uniform restriction.

The sum of the first two terms is positive since the uniform restriction can at least deliver

W n > 0 from setting R = 1. And since ∂θur0 (·)/∂R < 0, the lower e0 the more likely (C.15)

holds with strict inequality, which calls for R = 1. In fact, if e0 = 0 the last two terms reduce

to

− hpRe1

(
θur0 s1

ψ1

)α
fp(θ

ur
0 (·))∂θ

ur
0 (·)
∂R

+ hpRe1

(
θvr1 s1

ψ1

)α
fp(θ

ur
1 (·))∂θ

ur
1 (·)
∂R

(C.16)

which, from ∂θur0 (·)/∂R < ∂θur1 (·)/∂R < 0 and θur1 < θur0 , is positive whenever fp(θ
ur
0 (·)) is

not much smaller than fp(θ
ur
1 (·)).
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Appendix D: Additional material for Section 4

D.1. Validation checks

We check the validity of our model assumptions and the estimated parameters of section 4

by contrasting some of its predictions and assumptions to the data. We start with an out-

of-sample validation that contrasts the predictions of the model for 2012 with the empirical

estimation for the 2012 sample. As shown in Figure D.1, the model captures reasonably well

the policy effects on fleet composition both around the 92-93 discontinuity and before that.

It fails, however, to capture the larger fraction of newer cars in Santiago relative to the rest

of the country.3

(a) Model prediction for DR coefficients after 20
years of the 1992 reform.

−
1
.5

−
1

−
.5

0
.5

1
β

τ

1980 1985 1990 1995 2000 2005 2010
Vintage (τ)

(b) Empirical estimation of DR coefficients after
20 years of the 1992 reform.

Figure D.1: Out of sample validation

Notes: Panel (a) contains model predictions for 20 years after policy implementation. The prediction is

for a policy equivalent to the Santiago-1992 reform using the parameters estimated with the 2006 data and

controlling for income and population. Panel (b) shows the estimated coefficients using data from 2012, i.e.,

20 years after policy implementation.

According to the model predictions contained in Figure D.1(a), a driving restriction like

Santiago-1992 should produce only relative changes in car holdings for models just on either

side of the 92-93 discontinuity. This is not only fairly consistent with what we see in Figure

D.1(b) but more so with what we see in Figure 2(b), which shows that the DR coefficients

in equation (1) for vintages away from the discontinuity are either not statistically different

from zero or barely so. The fact that the DR coefficients for the 94 and 95 vintages, and

not just 93, are positive is not surprising because there is always noise in car quality due to

3As documented in Gallego et al. (2013), one reason for this difference that is not captured in our model
is the substantive shift to private transport caused by the poorly implemented public transport reform in
Santiago in February 2007. Unfortunately, we cannot control for this in our empirical estimation in order to
separate it from the driving restriction.
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different features such as individual preferences, heterogeneity in cars’ aging, etc. The same

is true on the other side of the discontinuity: DR coefficients for 90 and 91 are comparable to

that for 92. For this reason we adopted in the estimation clusters of 4-vintage groups around

the 92-93 discontinuity.

Figures 2(b) and D.1(b) also serve to discuss the validity of our single-ownership assump-

tion. Some readers may question this assumption on the basis that the DR coefficients for

older models return to zero as we move away from the 92-93 discontinuity. This interpretation

is incorrect accordingly to our model. Using (31), our model predicts that θnrτ = (1/R)1/αθrτ
for both τ and τ + 1. So, if F is linear in the relevant range, which is a good approxima-

tion given the large number of vintages considered, we have qnrτ = Fnr(θ
nr
τ ) − Fnr(θ

nr
τ+1) ≈

qrτ = Fr(θ
r
τ ) − Fr(θ

r
τ+1).4 Therefore, any evidence of a second-car effect should have been

reflected in strictly positive DR coefficients for the older models. Failing to find this in a

less than optimal vintage-specific design, together with the fact that total-ban vintage de-

sign eliminates the second-car effect by construction, validates the use of the single-ownership

assumption in our model given our focus on vintage-specific designs. Moreover, in Section

B.3) we provide econometric evidence suggesting the driving restriction did not affect the

second-car margin.

4The linearity in F (·) is actually not necessary given our estimation results below: (1/R)1/α = 1.015.
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D.2. Emissions and within vintage heterogeneity

Throughout our analysis, we have been using vintage as the main observable that determines

whether and the extent to which a car is subject to a driving restriction (or payment of

circulation fees). In this appendix, we implement several exercises that document that vintage

explains a relevant share of the variation of emission rates at the vehicle level. We use the

2008 and 2016 datasets of smog checks (the first and the last available datasets) and a series

of fixed-effect models to study the variation of emission rates within and between vintages.

We drop from our sample any car older than 40 years old and any model with fewer than 50

observations. We focus on CO readings at 2500 rpm.5 The first thing to notice is that CO

readings may be miss-measured because of varying measurement conditions such as changes in

ambient temperature, humidity, etc. We take advantage of cars with multiple measurements

in the same year to identify the extent of this miss-measurement. If we assume that there is

classical measurement error, the R2 of a regression of emissions on plate number fixed effects

gives the signal-to-noise ratio and, therefore, a proxy for the share of variation that reflects

real differences in emission rates across cars. Column (1) in Table D.1 presents the value for

the 2008 and 2016 samples. In both cases, results imply that about one-third of the variation

in emission rates seem to be related to noise (31% in 2008 and 37% in 2016).

Table D.1: R2 of different fixed-effect models

(1) (2) (3) (4) (5)
Panel (a): Sample 2008
R2 0.685 0.397 0.401 0.422 0.450

Obs. 703304 790736 790736 790683 784633

Panel (b): Sample 2016
R2 0.624 0.271 0.280 0.300 0.330

Obs. 704793 1057427 1057425 1057239 1047960

Controls
Vintage Vintage Vintage

Car plate f.e. Vintage f.e. + + ×
Maker f.e. Model f.e. Model f.e.

Notes: The table presents the R2 of different model specifications. Panel (a) uses smog-
check data of 2008, while Panel (b) of 2016. Column (1) corresponds to a regression of
emission measures of cars with multiple smog-checks measurements in the same year against
car plate fixed effects. Columns (2)-(5) corresponds to a regression where each car appears
only once, and we regress emissions against vintage, maker, and model fixed effects as noted
in the table.

These results give an upper bound of how much of the variation in emission rates can be

explained by observable characteristics of a car. Now, we move to see how much of the variation

can be explained by vintage effects. Column (2) presents results of regressions of emission rates

5This give us a sample of 50 makers, 3826 models, and about 800,000 vehicles in 2008 and 95 makers, 5609
models, and about 1,050,000 vehicles in 2016.
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on a vector of vintage fixed effects. Results imply that 39% of the total variation in emission

rates in 2008 is explained by variation between vintages. Given the results in Column 1, this

implies that around 57% (=39%/68%) of the “real” variation of emission rates is explained just

by vintage effects.6 Next, in columns (3) to (5) we add other fixed effects related to observable

characteristics: the maker (column 3), the model (column 4), and a vector of model×vintage
fixed effects (Column 5). While all these observable characteristics increase the R2 of the

models, the marginal contribution of each of them in explaining variation seems to be much

smaller than the contribution of vintage. This is interesting because among all observable

characteristics of a car that can be observed by regulators (and not subject to manipulation

by users), vintage is by far the most relevant to explain emission rates.

Results for the 2016 dataset confirm that vintage is the most important observable char-

acteristic to explain variation in emission rates; although the share of the variation explained

by it decreases to about 27%, or about 44% (= 27%/62%) when considering variation net of

measurement error. This decrease is not entirely surprising since vintage captures not only the

fact that control technologies deteriorate overtime but also the fact that at time passes new

cars enter the market with better control technologies. The 2008 sample has a much higher

fraction of pre-1993 models, so much of the variation in emission rates is explained by the big

jump at the 92-93 discontinuity, as shown in Figure 3 in Section 2.3 of the paper. Neverthe-

less, the share of emission rates explained by variation between vintages in the 2016 sample

is still high, especially considering the big sample we use, and the fact that the contribution

of other observable characteristics remains much smaller (which is remarkable as the number

of models increases significantly in the 2016 sample).7

Despite an important share of the variation in emission rates is explained by vintage, there

is still the concern that a focus on vintage may reduce the effectiveness of a vintage-specific

restriction by not correcting for the presence of older cars with lower-than-average emission

rates and of newer cars with higher-than-average emission rates. In Figure D.2 we present

some measure of emission rate dispersion for different vintages. We use the interquartile range

of CO readings for the four-year intervals used in the text (i.e., cars between 0 and 3 years old,

4 and 7,..., and 24 and more years old) for the 2008 and 2016 samples.8 Results for the 2008

sample mimic Figure 3 in Section 2.3 by showing a big discontinuous change for the 1989-1992

group. The two figures suggest that the overlap of the interquartile variation for different

6More formally, let us assume that e = x+m+ ε, where e is the emission rate measured during the smog
check, x is a function of observable variables, m is miss-measurement, and ε is unobserved heterogeneity. We
assume the three components are orthogonal among them (i.e., we have classical measurement error). Then,
the R2 of the regressions in column (1) is (σx + σε)/(σx + σm + σε) and the R2 of the regressions in columns
(2) to (5) is (σx)/(σx + σm + σε). Therefore, the R2 of a regression of (e − m) (i.e. emission rate net of
miss-measurement) is the R2 of the regression of e on x divided by the R2 of the regression in column (1).

7This probably reflects the increase in the demand for cars following the aforementioned (failed) reform in
public transport that took place in 2007 (Gallego et al., 2013).

8For the 2016 sample, and following our procedure from Section 4.2, we use only post-1992 cars equipped
with a catalytic converter.
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Figure D.2: Interquartile distribution of CO emissions at 2500 RPM by different vintage
groups

Notes: This figure shows interquartile ranges of car emissions for different age groups. Panel (a) has cars

corresponding to the sample of 2008. Panel (b) shows emission measures in 2016 for cars built after 1992

equipped with a catalytic converter.

vintages is limited, especially for cars in the middle-range of their lifespans. For instance,

Figure D.2(a) shows that there is almost no overlap across vintages in the first five groups

(i.e. for cars 20 years old and younger) and just then the last three groups present more or less

the same level and dispersion of emission rates (which may include selection effects, i.e., the

fact that cars in better condition, including lower emission rates, are likely to survive longer

in the market). A similar picture appears in Figure D.2(b) using the 2016 sample, where there

is little overlap in the interquartile range across vintages. These results are important for our

paper as they suggest that the cost of targeting policies just on vintage cannot be large. Yet,

as discussed in the main text, regulators can always add other observables, provided they can

be enforced, to reduce the residual variation across cars.
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D.3. Emissions: age and vintage effects

As discussed in Section 2.3 of the paper, our estimates of emissions are a combination of

newer cars entering with cleaner technologies (vintage effects) and pollution-control technolo-

gies wearing out over time (age effects). In this section, we exploit smog checks data from a

balanced panel of cars that we can follow in the 2008-2016 samples, and estimate a regression

of emissions on age and vintage fixed effects.9 We estimate vintage effects for the 1988-2005 co-

horts and age effects from age 3 to 20 using CO emissions as the dependent variable.10 Figure

D.3(a) presents the estimated age and vintage fixed effects. For a more straightforward com-

parison, we align the age effects with the vintage effects such that a 3-year-old car is equivalent

to vintage-2005 car. In addition, we present as reference the cross-sectional estimates (which

include both age and vintage effects) using the 2008 smog checks dataset. Interestingly, the

average difference between the sum of age and vintage effects from our panel data estimates

and the cross-sectional estimates using the 2008 cross-section is equal to 0.0013, which allows

us to interpret the cross-sectional estimates as the sum of vintage and age fixed effects.

These results reveal the significant discontinuous drop in emissions in post-1992 cars.

We also observe smooth increasing age effects. Figure D.3(b) show that for most post-1992

vintages about half of the cross-sectional effect corresponds to age effects. In contrast, for the

pre-1993 cars, vintage effects explain around 90% of the cross-sectional estimates.

These estimates provide an idea of how much emission heterogeneity over time is explained

by newer cars entering with cleaner technologies and how much by pollution-control technolo-

gies wearing out over time. We show that both dimensions are important and that, while

age effects matter and seem to evolve smoothly, there are some technological changes that

produce discrete changes in emissions (such as the catalytic converter) alongside smoother

technological advances that contribute to changes in emissions too. The latter is of the same

order of magnitude than age effects. Given that all cars in the market are imported, these

patterns respond to a world-wide tendency in the car industry and, therefore, similar patters

should be found in other contexts.

9We drop from the sample cars that are more than 20 years old to avoid selection problems in the right
tail of the distribution.

10We cannot estimate the effects for ages 1 and 2 because most cars are exempted from smog checks during
the first two years.
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Figure D.3: Vintage v/s age effects

Notes: This figures shows the estimated fixed effects coefficients of two different regressions. In Panel (a),

“Cross-section estimates” are the coefficients of age/vintage fixed effects in a cross-sectional data corresponding

to the 2008 smog-checks sample. “Vintage f.e.” and “Age f.e.” are the estimates of vintage and age fixed

effects respectively of a balanced panel of cars that merges data from 2008 to 2016 smog-checks sample. In

Panel (b), we show the contribution of each of the “Vintage f.e.” and “Age f.e.” to total emissions.
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D.4. Emissions and mileage

In this section, we study whether there is any correlation between miles traveled and emission

rates, in particular the extent to which car that is run more intensively tends to emit more

local pollutants per mile. Our model is built upon the assumption that there does not exist

such correlation. So, as explained at the end of section 5.2 in the text, finding a positive

correlation would necessarily reduce the convexity in the emissions-age/quality relationship

we have used in our simulations, which could eventually invalidate our results.

We run regressions of CO readings at 2500 rpm on miles traveled in 2016 (as explained in

section 2.3 of the text, miles traveled are obtained from odometer readings in 2015 and 2016).

Regression results are in Table D.2 below. We start presenting the bi-variate regression in

column (1). Results imply a negative and statistically significant correlation between both

variables. However, there are obvious omitted variables relevant to identify the relationship

between both variables. Thus, in column (2) we add vintage fixed effects. Then, the estimate

of the correlation becomes positive but is statistically insignificant. The same results appears

in the next column when we add vintage×model fixed effects. Thus, once we control for the

age of the car, there appears to be no correlation between miles traveled and emission rates,

which is what we have been assuming in the paper.

Table D.2: CO emissions and mileage

(1) (2) (3)
Miles traveled -0.405∗∗∗ 0.0166 0.0216
(in hundreds of thousands) (0.018) (0.016) (0.016)

Controls
Vintage

No Vintage f.e. ×
Model f.e.

Observations 263478 263478 263478
R2 0.002 0.239 0.334

Notes: The independent variable is measured in hundreds of thousands of
miles. The average value of the dependent variable (CO emissions) is 0.28%.
The average value of the independent variable (miles traveled) is 9.3 thousands
miles. The coefficient in column (3) implies that increasing miles traveled by
10% increases CO emissions by 0.07%.
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D.5. Emissions and new cars

Another important assumption in our model is that individuals driving the most (i.e., those

with the highest θ) buy less polluting cars. The fact that these individuals buy newer, more

expensive cars seems reasonable, since θ is highly correlated with income, but one may nev-

ertheless argue that these individuals also tend to buy larger cars which may end up emitting

more local pollution per mile driven. We explore this possibility by looking at correlations at

the district level between CO emission rates, fraction of newer cars (i.e., cars no more than

4 years old), and income levels. For the analysis, we merge the 2008 sample of smog checks

with information on income and the share of new cars that we use in Section 2.1 of the paper

(which uses data for 2006). Figure D.4 presents the results. We can see, from Panels (c)

and (d), that districts with higher income per capita have indeed a bigger share of new cars

per capita and, from Panel (a), that districts with a larger fraction of newer cars have cars

that emit less per mile driven. Consistent with our assumption, all this leads to a negative

correlation between income and emissions, as shown in Panel (b).
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Figure D.4: Correlation between CO emissions, new cars, and income

Notes: This figure shows several correlations between district characteristics. Panel (a) shows that districts

with higher shares of new cars tend to have a cleaner fleet. Panel (b) shows that richer districts tend to have

a cleaner fleet. Panel (c) shows that richer districts tend to have larger shares of new cars. Panel (d) shows

the relationship from (c), but using a log specification on the dependent variable.
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Appendix E: Additional material for Section 5

E.1. Policy simulations for Santiago 1992

The main difference between our policy simulations in Section 5 of the paper and the driv-

ing restriction implemented in Santiago in 1992 is the role played by a drastic change in the

pollution-control technology, namely, the introduction of the catalytic converter. In the simu-

lations in Section 5 we consider an invariant relationship between age and emission rates. This

is clearly a bad approach to evaluate the impact of the 1992 policy since as time goes by the

number of cars without the converter drops eventually to zero. In this section, we extend our

model to consider a time-varying relationship between age and emission rates. In particular,

we now let the external cost per mile driven in region k to depend on vintage as follow

εka,t =

hnck exp(ωa) if τ ≤ 1992

hck exp(ωa) if τ > 1992
(E.1)

so as to reflect the fact that cars equipped with a converter (c) can generate quite different

external costs than cars not equipped with it (nc). To estimate the values of hck, h
nc
k and ω

we follow the procedure from Section 4.2 of the paper but adding the parametric structure

of (E.1) and minimizing the difference between actual harm and predicted harm rather than

matching it as we do in equation (33) in the paper. The parametric structure on the external

cost per mile allows us to extrapolate the curve to other periods, when non-catalytic converter

cars are only prevalent in older cars (to eventually disappear). Instead of using smog-check

readings from the 2016 sample, we now use readings from the 2008 sample —the oldest

available sample—, which includes both post- and pre-1993 models.11

Results from the estimation are presented in Table E.1. Panel (a) shows the external cost

per mile following the non-parametric procedure of section 4.2. In Panel (b) we impose the

structure of equation (E.1) and estimate the curve as described above. Both the parametric

and the non-parametric methods give similar results, validating our ad-hoc functional form

assumption. We use the estimated values of hck, h
nc
k , and ω to compute the external cost curve

for other years. in Panel (c), we present as an example the estimated external cost in year

2000, where relatively newer cars where still not equipped with a catalytic converter.

With those estimates at hand, we proceed to do counterfactual simulations. We present

welfare results in Table E.2. The dynamic component of the policy makes it computationally

hard to find the equilibrium path in many cases, so we focus only on four scenarios: (i) no in-

tervention, (ii) first best pigouvian taxation, (iii) a vintage-specific restriction as implemented

in Santiago in 1992, and (iii) a vintage-specific restriction that places a heavier restriction on

pre-1993 models than the 1992 policy does. Note that driving surplus in the absence of any

11We do not use NOx readings, which account only for 3%, as it is not available in the 2008 dataset.
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Table E.1: External costs per mile

Age (a) 0 1 2 3 4 5
Panel (a): non-parametric estimation (t = 2008)
εra,t 0.0193 0.0315 0.0886 0.1884 1.8853 3.9252

εra,t 0.0023 0.0036 0.0103 0.0219 0.2199 0.4579

Panel (b): parametric estimation (t = 2008)
εra,t 0.0189 0.0399 0.0844 0.1783 1.8717 3.9551

εnra,t 0.0022 0.0047 0.0098 0.0208 0.2184 0.4614

Panel (c): parametric estimation (t = 2000)
εra,t 0.0189 0.0399 0.4192 0.8857 1.8717 3.9551

εnra,t 0.0022 0.0047 0.0489 0.1033 0.2184 0.4614

Notes: External costs are estimated following the procedure described in
section 4.2 and imposing the parametric form given by equation (E.1).

intervention is unchanged relative to that in Section 5. Pollution costs, however, change due

to the new damage function.

Table E.2: Welfare calculations

# Counterfactual Transport surplus Pollution cost Welfare Welfare gain/loss
(in 2006 dollars) (in 2006 dollars) (in 2006 dollars) (relative to first-best)

1. No intervention 5579.6 -1935.1 3644.5 0%
2. First best 5339.3 -483.6 4855.7 100%
3. Santiago’s 1992 restriction

(R = 0.9684, τ > 1992)
5564.6 -1794.2 3770.4 10%

4. Optimal driving restriction
(R = 0, τ > 1992)

5197.8 -624.7 4573.1 77%

Notes: The table shows present-value welfare calculations under different policy counterfactuals for the

case of Santiago’s 1992 reform. All calculations are in per capita terms in 2006 dollars. The first column

presents household surplus from driving, ignoring pollution costs. The second column presents pollution

costs. The third column corresponds to welfare calculations as the sum of driving surplus and pollution

costs. The fourth column presents welfare gains/losses as a fraction of the welfare gain under the first best

(i.e., Pigouvian taxation). Differences between rows 3. and 1. correspond to the welfare gains associated

with the policy implemented in 1992.

When looking at the welfare consequences of the policy implemented in Santiago in 1992

we find a positive and relatively large effect. Pollution costs decrease by 7% relative to the case

of no intervention, resulting in a 3% increase in overall welfare. When we look at 3 periods

after policy implementation (equivalent to the 2004-2008 period) we find that emissions in

Santiago dropped by 10% relative the no-intervention counterfactual level, slightly lower that

our “reduced-form” results in Section 2.3. The difference is partly explained by a general

equilibrium effect on the overall fleet, more precisely, an increase of around 3% of new cars at
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the country level during the first years following the implementation of the policy. According

to our model, Santiago’s policy achieved 10% of the potential welfare gains from implementing

pigouvian taxes.

In the last row of Table E.2 we present the result of a more aggressive vintage-specific

restriction that places a complete ban on pre-1993 models starting in 1996. As in section 5.2,

this exercise helps to illustrate that welfare gains can vary substantially depending on how

these vintage-specific restrictions are designed. In this particular case, the gains under this

more aggressive restriction are six times larger than the gains under the 1992 design.
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E.2. Temporal variation in pollution harm

Following the discussion in section 5.4 of the paper, here we extend the model to the case

in which local pollutants have different external costs depending on when they are emitted

(e.g., peak vs. off-peak hours, weekdays vs. weekends, winter vs. summer months, etc). For

simplicity let us assume that the harm caused by a unit of pollution is hr during a fraction

λ of the time and 0 otherwise. In such a setting, driving restrictions appear particularly

flexible.12 The owner of an a-year-old car subject to a restriction of intensity Ra applied

over a fraction λ of the time will drive xr,λ(θ, a) = λRa

(
θsa
ψ

)α
miles during that time and

xr,1−λ(θ, a) = (1− λ)
(
θsa
ψ

)α
during the remaining time, resulting in an overall utility of

ur(θ, a;λ) = (1− λ+ λRa)κ (θsa)
α − pa (E.2)

per period. Since the social value of driving during times in which pollution is a problem is

exactly as before, i.e, Raκ (θsa)
α − hrRa (θsa/ψ)α, obtaining the optimal value of Ra follows

the same reasoning of section 3.5, so it ends up being independent of the value of λ.13

Of the alternative instruments considered in the simulations in section 5, it is evident

that by construction scrappage subsidies cannot cope with this temporal variation as they

require the scrapping car to be removed permanently from the market. Gasoline taxes face

a similar problem. In contrast, circulation/registration fees have the potential to cope with

temporal variation. The authority must offer each year a menu of circulation fees that vary

by vintage: drivers have the option to pay either a positive fee for unlimited use of the car

or no fee for its use only during the 1 − λ hours in which pollution is not a problem. In

equilibrium, there is a cutoff age below which all car owners opt for the fee and above which

none does. Not surprisingly, this cutoff is very similar, and sometimes equal, to the threshold

in the optimal vintage-specific restriction design. As illustrated in Figure E.1, however, if

the option of offering these circulation menus is not available, the advantage of circulation

fees over (optimal) vintage-specific restrictions rapidly vanishes as λ drops and completely

disappears when λ = 0.25. Note that in all simulations we assume pollution harm in Santiago

to be hr = h/λ a fraction λ of the time and 0 otherwise, so that welfare under no intervention

would remain constant across simulations.

12The model easily extends to an even higher number of partitions, as in today’s Mexico City HNC, which
differentiates by weekdays, Saturdays, and Sundays. Damage h will vary across these partitions, and so will
the optimal vintage threshold in each of them. The procedure to obtain these thresholds is the same as in the
case of two partitions.

13This “independence” result seems reasonable for divisions that concern months and weekdays from week-
ends, it may appear less reasonable when it concerns hours of the day, as drivers may substitute peak for
off-peak driving. This substitution can still be handled by the model at the cost of additional notation
without any fundamental change of our results.
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Figure E.1: Welfare under temporal variation in pollution harm

Notes: This figure shows welfare estimations when extending the model to

allow for temporal variation in pollution harm (i.e., λ) under various scenar-

ios: optimal dirving restrictions, (no-menu) optimal circulation fees, and no

intervention.

35



E.3. Policy simulations figures

(a) Santiago (b) Rest of the country

Figure E.2: Steady-state fleet composition under a uniform driving restriction

(a) Santiago (b) Rest of the country

Figure E.3: Steady-state fleet composition under a driving restriction that exempts cars 12
years old and younger
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(a) Santiago (b) Rest of the country

Figure E.4: Steady-state fleet composition under optimal circulation fees

(a) Santiago (b) Rest of the country

Figure E.5: Steady-state fleet composition under the optimal scrappage subsidy with full
arbitrage between restricted and non-restricted areas ($2420)
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(a) Santiago (b) Rest of the country

Figure E.6: Steady-state fleet composition under the optimal scrappage subsidy with no
arbitrage between restricted and non-restricted areas ($3240)

(a) Santiago (b) Rest of the country

Figure E.7: Steady-state fleet composition under an optimal gasoline tax in Santiago ($1.06
per gallon)
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(a) Santiago (b) Rest of the country

Figure E.8: Steady-state fleet composition under a vintage driving restriction & gasoline tax
(R = 0, a ≥ 4, ¢80 per gallon)
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