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Abstract

This paper studies how schools respond to financial incentives. Governments can penal-
ize institutions with high dropout or loan default rates, and these institutions can respond
by increasing quality or changing the selection of students. We study the predictions of the
model using a 2017 reform in Brazil, which made schools pay a fee for students receiving
federal student loans that dropped out or defaulted. Consistent with the predictions of
the model, we find that schools more reliant on government aid reduced dropout rates,
primarily by increasing quality. We build an equilibrium model to illustrate the trade-off
faced by policymakers, and use our estimates to study optimal policy. We find that schools
should pay for approximately half of all dollars charged off in default.
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1 Introduction

There is significant heterogeneity in the returns to education, and many institutions particularly

in the for-profit sector see significantly lower returns (Hoxby and Turner, 2019; Mountjoy and

Hickman, 2020; Deming, Yuchtman, Abulafi, Goldin and Katz, 2016) and poor outcomes for

student loan borrowers (Looney and Yannelis, 2015, 2021). These poor outcomes at certain

schools have received significant attention among policymakers, with calls to punish or even

close low-performing institutions.1 A key reason for these low returns is the misalignment of

incentives between schools and students, particularly when educational quality is opaque, and

most funding comes directly or indirectly from government sources which are not linked to

outcomes.

A potential solution to this problem lies in directly aligning the incentives of schools of

students. If schools pay a portion of the costs of dropout and loan default, then they have

a direct financial interest in preventing adverse student outcomes. Schools may then invest

in improving educational quality or student placement rather than, for example, advertising

and recruiting students.2 The idea that financial incentives may cause schools to improve their

quality has roots in Friedman (1955), who noted that financial incentives for schools have

“closer scrutiny of the purposes for which subsidies are granted. The subsidization of institutions

rather than of people has led to an indiscriminate subsidization of whatever activities it is ap-

propriate for such institutions to undertake, rather than of the activities it is appropriate for the

state to subsidize.” While financial incentives may lead to quality improvements, the returns to

education are notoriously difficult to estimate (Card, 1999; Dale and Krueger, 2002). Policy-

makers thus cannot contract on the unobservable value-added of schools, leading to desultory

responses by institutions. In the face of financial penalties, schools may avoid taking students

from challenging backgrounds, even if the value added to students is high. An unintended

consequence of financial incentives may be that academically-challenged students from low-

income backgrounds may be screened out.

1Giving schools “skin-in-the game” has been suggested by a number of policymakers. For example, the pro-
posed Skin in the Game Act in the United States would require students to pay off half of loans in the case of
default. This is similar to earlier proposals for the Student Loan Borrower Bill of Rights, which have come from dif-
ferent political parties. Never fully-implemented Gainful Employment Rules also linked schools’ ability to access
loans to labor market metrics. Historically, schools with high loan default rates faced sanctions.

2Deming, Goldin and Katz (2012) and Eaton, Howell and Yannelis (2020) find that for-profits, and in particular
private-equity backed for-profits spend a significantly greater portion of their budget on advertising expenses.
Cellini and Chaudhary (2020) find that for-profits tend to target communities like veterans with higher eligibility
for federal loans and grants.
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This paper studies financial incentives for colleges and universities through government

loan programs in the context of a 2017 reform in Brazil. The reform made schools pay a fee for

students who took out federal student loans and then dropped out or defaulted. We present a

theoretical model and then use administrative national educational data to explore the predic-

tions of the model and the consequences of the reform. We exploit variation in schools’ ex-ante

reliance on government loan programs and study differential responses. We find that finan-

cial incentives reduce the enrollment of students with federal assistance at selective schools

and that quality improves at institutions reliant on government loans. We find that the total

dropout rates decrease by .78 percentage points in two years. We find the effects are primarily

driven by improvements in educational quality leading to retention. While schools with high

dropout rates reduced reliance on the program, we find minimal effects on student selection.

We present a model to illustrate the trade-off faced by policymakers. Increasing institutional

accountability in terms of dropout and loan default rates increases quality but also decreases

enrollment of marginal students. Wealthier students are more likely to enroll in college, and

government loans can alleviate credit constraints. Universities are profit-maximizing and de-

termine the price, institutional quality, which affects dropout rates, and an academic quality

threshold governing eligibility for government loans. The model generates four key predic-

tions, which we take to the data. First, a higher penalty leads to a reduction in defaults. Sec-

ond, enrollment of students using government loans will decrease. Third, quality will increase.

Fourth, schools that ex-ante accept more students through a low cutoff will screen out more

students, and schools that are more reliant on federal loans will make larger improvements in

quality.

We study the implications of the model by using a novel link from administrative education

to census data from Brazil. We linked census data to federal administrative loan and grant data,

and entrance and exit test score data. Our final dataset includes the universe of students and

federal loan recipients in Brazil between 2013 and 2019. We use this data and a 2017 reform to

the primary Brazilian federal loan program, Financing of Higher Education Students, or Fundo

de Financiamento ao Estudante do Ensino Superior (FIES). The reform mandated that, starting

2018, institutions with high dropout and default rates have to pay up to 25% of the total loan

budget given to that institution. The policy was enacted in response to a loan default crisis, and

the goal of the policy was for institutions to improve educational quality and job placements

of students, ultimately reducing loan default rates and the cost to the government.
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We use the 2017 policy reform, and the different incentives it induced for schools more or

less reliant on FIES loans. We employ a difference-in-difference estimator, where the treatment

is the pre-policy share of students in the FIES program. First, we explore how dropout rates

changed at schools more reliant on federal loans.3 Schools that were heavily reliant on federal

loans at the time of the policy announcement were more affected by potential penalties, and

have stronger incentives to quickly reduce dropout rates. Consistent with schools responding

to financial incentives, we find that a 10% increase in the share of students receiving federal

loans in the period prior to the policy being enacted is associated with a 3% decrease in the

dropout rate in the first two years after the policy announcement.

We next study enrollment and quality improvements, and decompose the effect on dropouts

between improvements in quality and changes in student selection. We compare schools with

different ex ante test score cutoffs for participation in the loan program. Funds are allocated

by schools setting test score cutoffs, and students with high test scores can receive funds. Test

scores are also strongly predictive of dropouts, so schools with higher ex ante test scores cutoffs

are less likely to see financial penalties from the reform. Consistent with the predictions of the

model, we see lower enrollment of students using federal loans at these institutions following

the enactment of the policy. We further explore effects on quality. We find that schools more

reliant on the federal loan program increased their quality. First, we find that schools reliant

on FIES increased their faculty-to-student ratios. Second, we formally decompose the change

in dropouts by using observable student characteristics, on which schools can select, and sepa-

rating observables from residuals. The decomposition indicates that the reduction in dropout

rates is largely driven by quality improvements.

The final section of the paper builds an equilibrium model, so that we can compute the

optimal penalty and conduct counterfactuals. The model accounts for two types of market

imperfections. First, some students are liquidity constrained and their demand function does

not represent their true willingness to pay. Second, financing tuition with government money

can be disproportionately costly as the shadow cost of public funds can be greater than unity.

Total welfare stems from student welfare, university profits and the potential gains or losses of

having the government subsidizing tuition costs of dropouts. We estimate demand and supply

side parameters, and find that schools should pay for approximately half of all dollars charged

3While the policy targeted both dropout rates and loan defaults, we focus our analysis on the former due to
the recency of the policy.
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off in default.

This paper joins a literature on productivity and incentives in education. Recent work

including Hoxby and Turner (2019), Mountjoy and Hickman (2020) and Hoxby (2020) has

focused on estimating the returns to education at specific institutions, building on an earlier

literature (Card, 1999; Dale and Krueger, 2002). See Psacharopoulos and Patrinos (2018)

and Card and Krueger (1992) for a review on estimating the returns to education. Several

recent studies have found particularly poor returns in the for-profit education sector, which is

heavily reliant on federal student loans (Deming, Goldin and Katz, 2012; Deming, Yuchtman,

Abulafi, Goldin and Katz, 2016). Other work such as Dinerstein and Smith (2021) and Neilson

(2013) focusing on quantifying the supply response to changes in education funding, mostly

in the secondary sector. In a narrow sense, this paper also joints work on college completion

e.g., Oreopoulos (2007) and De Hoyos Navarro, Attanasio and Meghir (2019). This paper

contributes to this literature by studying how aligning the incentives of institutions can affect

education production by presenting both a new model and empirical analysis.

This paper further joins a literature on student loans, and particularly the role of institution

type in determining student loan outcomes. See Avery and Turner (2012), Amromin and Eberly

(2016), Lochner and Monge-Naranjo (2016) and Yannelis and Tracey (2022) for reviews of

theoretical issues and work on student loans. Important papers include Lochner and Monge-

Naranjo (2011), Di Maggio, Kalda and Yao (2019), Dinerstein, Yannelis and Chen (2023),

Kargar and Mann (2023) and Solis (2017), who study the effects of student loans on credit

constraints, enrollment, subsidy capture and returns. Much of the work on student loans has

highlighted the importance of institution heterogeneity. A large body of work shows that for-

profit schools in particular are reliant on government aid, have worse loan outcomes (Deming,

Goldin and Katz, 2012) and capture more government aid than other school-types (Cellini

and Goldin, 2014). Eaton, Howell and Yannelis (2020) show that private-equity backed for-

profit institutions are particularly adept at capturing federal aid. Looney and Yannelis (2015),

Mueller and Yannelis (2019) and Looney and Yannelis (2021) argue that most of the time series

variation in student loan defaults is driven by expansions in the share of for-profit borrowers,

which are in turn driven by expansion in credit supply. Armona, Chakrabarti and Lovenheim

(2018) argue that attending a for-profit college has a causal affect on loan default rates. Cellini

(2010) shows that financial aid induces the entry of for-profit schools. This paper is the first to

study a policy offering direct financial penalties for adverse student outcomes, and model the
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tradeoff between student selection and quality improvements.

The remainder of this paper is organized as follows. Section 2 presents a model of college

financial incentives and the trade-off between incentives and equity. Section 3 describes the

Brazilian higher-education reform and the administrative data used. Section 4 presents the

empirical strategy and results, while section 5 presents a structural model. Section 6 estimates

the model while section 7 presents counterfactual analysis. Section 8 concludes.

2 College Incentives and Student Outcomes

We begin with a simple model to illustrate the trade-off faced by policymakers, who want to in-

crease quality without decreasing enrollment by making institutions liable from their students

dropout and default rates. In our model, students choose whether to attend college or not.

Some students are liquidity constrained but can receive a government loan in order to attend

college. With some probability, students drop out and default on their loan, in which case

the government and the educational institution need to share the cost of tuition. How much

the institution pays is given by a penalty upon dropout established by the government and

charged to the institution. For tractability, there is one representative educational institution

in our model that chooses its educational quality and whether to deny admission to low-score

students under a loan. We show with the model how the institution responds to different levels

of the government penalty and derive theoretical results that motivate our empirical exercises

below.

There is a continuum of students indexed by i, which are characterized by their high-school

exit exam score ri ∈ [0,1] and their household income wi ∈ {0, 1}, which determine whether

they are eligible to the loan program or not. After taking the exam, each student decides

whether to attend the institution or not.

The government offers loans to students based on their income wi and their exam score ri.

In particular, the government will be willing to offer a loan to student i if wi = 0 and ri ≥ r̄,

where r̄ is a threshold determined by the institution. The larger the value of r̄, the harder it

is to get a loan to attend the institution. The institution, characterized by x , chooses the level

of quality provided q, and then loan threshold r̄ to maximize profits. For simplicity, we take

prices p as given. There is a minimum threshold r and a minimum standard of quality q that

is mandated by the government.
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The probability that student i enrolls in the institution is given by si, which is a function of

the student’s loan eligibility and tuition price p:

si(p, ri, wi) =



















s1(p) if wi = 1

s00(p) if wi = 0 and ri < r̄

s01(p) if wi = 0 and ri ≥ r̄

(1)

where s01(p)> s00(p)> 0 and s1(p)> 0.

Enrolled students drop out with probability d(ri, wi, q, x), which is a function of the student

characteristics, the degree quality, and other degree characteristics. If a student with a loan

drops out, she defaults.

Concerned by increasing dropout and default rates, the government establishes a penalty

to universities of θ per each student under a government loan that drops out.

In order to maximize profits, institutions choose their quality q and the eligibility threshold

r̄ by solving:

Π=max
q,r̄

∫

(p− c(q)− θ1{ri ≥ r̄}(1−wi)d(ri, wi, q, x)) si(p, ri, wi)dF(i) (2)

where c(q) is the marginal cost of providing education of quality q, such that c′(q)> 0.

Let ω ≡
∫

(1−wi)dF(i)
∫

wi dF(i)
be the relative share of low-income students vs high-income students

in the market, and F(·) and f (·) the CDF and pdf of the score distribution among students in

the market. Then, the institution’s problem can be rewritten as:

Π=max
p,q,r̄

π(p, q, r̄;θ ,ω)

=max
p,q,r̄

∫ 1

0

(p− c(q)) s1(p) f (r)dr
︸ ︷︷ ︸

profits from high-income students

+ω

∫ r̄

0

(p− c(q)) s00(p) f (r)dr
︸ ︷︷ ︸

profits from low-income-low-score students

+ ω

∫ 1

r̄

(p− c(q)) s01(p) f (r)dr
︸ ︷︷ ︸

profits from low-income-high-score students

−ωθ
∫ 1

r̄

d0(r, q, x)s01(p) f (r)dr
︸ ︷︷ ︸

default penalty

(3)

where d0(r, q, x) is the dropout rate of low-income students.

Proposition 1. In the absence of a penalty (θ = 0) the institution chooses r̄ = r and q = q.
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Proof. Taking first order conditions of Equation (3) with respect to r̄ and q we get

∂ π

∂ r̄
= ω(p− c(q))(s00(p)− s01(p)) f (r̄) +ωθ s01(p)d

0(r̄, q, x) f (r̄) (4)

∂ π

∂ q
= −c′(q) (s1(p) +ωs00F(r̄) +ω(1− F(r̄))−ωθ s01(p)

∫ 1

r̄

d0
q (r, q, x) f (r)dr (5)

Note that when θ = 0 we have that ∂ π∂ r̄ > 0 and ∂ π
∂ q > 0 for all (r̄, q), which implies that r̄∗ = r

and q∗ = q.

Proposition 1 shows that in the absence of any penalty, institutions want to offer loans to

as many students as they can. This is optimal because they do not need to pay the burden

of dropout. Moreover, because quality does not enter into the demand function, our result

suggests that institutions have no incentive to provide high quality, as it only increases the cost

of providing education.

Proposition 2. Let d0
q (r, q, x)< 0 and d0

r (r, q, x)< 0 so that higher quality induces less dropout

and high score students have lower dropout rates. For any value of θ such that r̄∗ > r and q∗ > q,

a higher penalty value θ induces the institution to increase the loan eligibility threshold r̄ and

quality q. In equilibrium, the institution accepts fewer students with loans and decreases average

dropout rate of students with loans.

Proof. From Equations (4) and (5) we have that

∂ 2π

∂ θ∂ r̄
= ωs01(p)d

0(r, q, x) f (r̄)> 0 (6)

∂ 2π

∂ θ∂ q
= −ωs01(p)

∫ 1

r̄

d0
q (r, q, x) f (r)dr > 0 (7)

We know that at the optimum, ∂ π∂ r̄ =
∂ π
∂ q = 0, ∂

2π
∂ r̄2 < 0, and ∂ 2π

∂ q2 < 0. Moreover, by the implicit

function theorem, we know that ∂ r̄∗

∂ θ = −
∂ 2π
∂ θ∂ r̄
∂ 2π
∂ r̄2

> 0 and ∂ q∗

∂ θ = −
∂ 2π
∂ θ∂ q

∂ 2π
∂ q2

> 0.

Let N =
∫ 1

r̄
s01(p) f (r)dr be total enrollment of students with loans. Then, ∂ N

∂ θ =
∂ N
∂ r̄∗

∂ r̄∗

∂ θ < 0. Let

D =
∫ 1

r̄
d0(r, q, x)s01(p) f (r)dr be total dropout of students with loans. Then, ∂ D

∂ θ =
∂ D
∂ r̄∗

∂ r̄∗

∂ θ +
∂ D
∂ q
∂ q
∂ θ < 0. Let D̄ = D

N be the average dropout rate of students with loans. Note that ∂ D̄
∂ r̄ =

1
N2 s01(p) f (r̄)

�

∫ 1

r̄
d0(r, q, x)s01(p) f (r)dr − d0(r̄, q, x)

∫ 1

r̄
s01(p) f (r)dr

�

because d0
r (r, q, x) < 0.

Then, ∂ D̄
∂ θ =

∂ D̄
∂ r̄∗

∂ r̄∗

∂ θ +
∂ D̄
∂ q
∂ q
∂ θ < 0.
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By increasing the dropout penalty, the government incentivizes institutions to improve qual-

ity. This can have positive effects as it decreases dropout, but it also increases institutions’ cost

of providing education. Moreover, increasing the penalty can result in adverse effects in which

institutions increase the loan eligibility threshold, leaving out students with low score that can

not pay to attend college.

Now, we try to understand how institutions with different characteristics would respond

differentially to the policy. These results will motivate later our empirical exercises.

Proposition 3. Let d0
x (r, q, x) < 0, d0

qx(r, q, x) > 0 so that institutions with higher x have lower

dropout and are less effective in reducing it (e.g. because they have lower dropout to start with).

For any value of θ such that r̄∗ > r and q∗ > q, degrees with higher x will choose lower threshold

r̄ and lower quality q. In equilibrium, institutions with higher x enroll more students with loans

after the policy implementation.

Proof. From Equations (4) and (5) we have that

∂ 2π

∂ x∂ r̄
= ωθ s01(p)d

0
x (r̄, q, x) f (r̄)< 0 (8)

∂ 2π

∂ x∂ q
= −ωθ s01(p)

∫ 1

r̄

d0
qx(r, q, x) f (r)dr < 0 (9)

We know that at the optimum, ∂ π∂ r̄ =
∂ π
∂ q = 0, ∂

2π
∂ r̄2 < 0, and ∂ 2π

∂ q2 < 0. Moreover, by the implicit

function theorem, we know that ∂ r̄∗

∂ x = −
∂ 2π
∂ x∂ r̄
∂ 2π
∂ r̄2

< 0 and ∂ q∗

∂ x = −
∂ 2π
∂ x∂ q

∂ 2π
∂ q2

< 0.

Let N =
∫ 1

r̄
s01(p) f (r)dr be total enrollment of students with loans. Then, ∂ N

∂ x =
∂ N
∂ r̄∗

∂ r̄∗

∂ x > 0

which implies that institutions with high x admit more students with loans after the penalty is

imposed.

In our setting, x can be interpreted as an institution characteristic that attracts higher qual-

ity students and that is correlated in the data with ex-ante cutoff score. Our result suggests,

then, that institutions with higher ex-ante cutoff score, which tend to attract students with

lower dropout rates, will enroll more students with loans than those institutions that tend to

have students with higher dropout rates.

Proposition 4. For any value of θ such that r̄∗ > r and q∗ > q, degrees with higherω will choose

higher quality q. The choice of the threshold r̄ is independent of ω. In equilibrium, institutions

with higher ω decrease dropout more.
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Proof. From Equations (4) and (5) we have that

∂ 2π

∂ω∂ r̄

�

�

�

�

r̄∗
= 0 (10)

∂ 2π

∂ω∂ q

�

�

�

�

q∗
=

c′(q∗)s1(p)
ω

> 0 (11)

We know that at the optimum, ∂ π∂ r̄ =
∂ π
∂ q = 0, ∂

2π
∂ r̄2 < 0, and ∂ 2π

∂ q2 < 0. Moreover, by the implicit

function theorem, we know that ∂ r̄∗

∂ω = −
∂ 2π
∂ω∂ r̄
∂ 2π
∂ r̄2

= 0 and ∂ q∗

∂ω = −
∂ 2π
∂ω∂ q

∂ 2π
∂ q2

> 0.

Let N =
∫ 1

r̄
s01(p) f (r)dr be the total enrollment of students with loans. Then, ∂ N

∂ω =
∂ N
∂ r̄∗

∂ r̄∗

∂ω = 0.

Now, let D =
∫ 1

r̄
d0(r, q, x)s01(p) f (r)dr be the total dropout of students with loans. Then,

∂ D
∂ω =

∂ D
∂ r̄∗

∂ r̄∗

∂ω +
∂ D
∂ q
∂ q
∂ω =

∂ D
∂ q
∂ q
∂ω < 0. Because N is invariant to ω, we have that institutions with

higher ω have lower average dropout.

Finally, Proposition 4 shows that institutions with a higher ex-ante share of students using

loans will respond by increasing their quality more.

2.1 Welfare analysis

In order to discuss optimal policy, we need to take normative stands on welfare. Our model

accounts for two types of market imperfections. First, low income students that do not have

access to a loan are liquidity constrained and their demand function does not represent their

true willingness to pay. Second, the shadow cost of public funds (1+λ) can be greater that one,

which means that financing tuition with government money can be disproportionally costly.

We assume that the distribution of true willingness to pay for high- and low-income students

is given by b1(x) ≡ s−1
1 and b0(x) ≡ s−1

01 (p) respectively. This implies that students’ demand

fully internalizes the probability of dropping out when they are not liquidity constrained. Total

welfare is then given by the sum of students’ surplus, the institution’s profits and the govern-

ment’s expenditure adjusted by its shadow cost:

W (θ ,λ) =

∫ s1(p)

0

(b1(x)− c(q∗))d x +ω(1− F(r̄∗))

∫ s01(p)

0

(b0(x)− c(q∗))d x

+ωF(r̄∗)

∫ s00(p)

0

(b0(x)− c(q∗))d x −λ(1− θ )ω
∫ 1

r̄∗
d0(r, q, x)s01(p) f (r)dr. (12)
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A social planner that wants to maximize welfare will chose a penalty value θ ∗ that solves

for the following first order condition:

0 = − ωs01(p)(θ −λ(1− θ ))
︸ ︷︷ ︸

Default cost

�

d0(r̄∗, q∗, x) f (r̄∗)
∂ r̄∗

∂ θ
−
∫ 1

r̄∗
d0

q (r, q∗, x) f (r)dr
∂ q∗

∂ θ

�

︸ ︷︷ ︸

Marginal change in dropout

+ λωs01(p)

∫ 1

r̄∗
d0(r, q∗, x) f (r)dr

︸ ︷︷ ︸

Marginal increase in government revenue

−ω f (r̄∗)
∂ r̄∗

∂ θ

∫ s01(p)

s00(p)

(b0(x)− p)d x

︸ ︷︷ ︸

Marginal decrease in access to loans
for constrained students

. (13)

Proposition 5. If the marginal value of public funds equals one (i.e. λ = 0), the optimal policy

is given by θ ∗ = 0.

Proof. Refer to the first-order condition. Since d0
q < 0 < d0, and by Proposition 2, dq∗

dθ , dr̄∗

dθ > 0,

if λ= 0, then ∂W
∂ θ < 0, hence θ ∗ = 0.

As Proposition 5 shows, when the marginal value of public funds is one, the optimal policy

is to not have any penalty and to offer loans to all constrained individuals. Loans in that case act

as a lump sum transfer from the government to students that otherwise would be constrained

and would not attend college.

Proposition 6. If the marginal value of public funds is greater than one (i.e. λ > 0) and there

are no liquidity constraints (i.e. s00(p) → s01(p)), the optimal policy is given by any θ > 0. In

equilibrium, the institution chooses r̄∗ ≥ 1 and no student receives loans.

Proof. Recall from the first order conditions of the institution that

∂ π

∂ r̄
= ω(p− c(q∗))(s00(p)− s01(p)) f (r̄

∗) +ωθ s01(p)d
0(r̄∗, q, x) f (r̄∗).

If s00(p)→ s01(p), then ∂ π
∂ r̄ > 0 and therefore r̄∗ goes to its maximum possible value.

As Proposition 6 shows, when students are not liquidity constrained, institutions do not

gain from offering loans to students. Therefore, any penalty policy will induce institutions to

set a high threshold and not offer loans to anyone. Since loans only provide social value when

there are liquidity constraints, the optimal policy is to set a strictly positive penalty.
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3 Institutional Details and Data

3.1 Higher Education in Brazil

The Brazilian higher education market is composed of both public and private institutions. In

1997, a series of regulations facilitated the expansion of the private sector by, among other

things, allowing for-profit institutions.4 As a result, enrollment in private institutions has more

than tripled in the last two decades. By 2018, 71% of the 6.4 million students enrolled in

higher education were enrolled in the private sector.

In Brazil, public institutions are free of tuition and, in general, more prestigious. With some

exceptions, they also tend to be more selective and enroll students with higher test scores. Con-

sequently, they are significantly oversubscribed. On the other hand, private institutions usually

charge tuition and are not selective, with 90% of the degrees operating below 80% of their ca-

pacity. In this context, affordability is the main obstacle to attending a private school, which is

the motivation for a series of financial aid policies, including the student loan expansion under

FIES.

3.2 FIES – The Federal Student Loan Program

In 1999, the federal government merged several student aid initiatives into FIES. FIES provides

subsidized loans to low-income students enrolled in private HEIs that cover up to 100% of their

tuition costs. Under the program, universities are funded directly by the government. Schools

are paid monthly for students enrolled under the program in the past month. Until 2009, the

program remained relatively small and restricted to higher-acheivement students, and hence

accountability was not a large concern. In 2010, FIES was restructured, and access became

virtually unrestricted. Consequently, the number of new contracts expanded from less than 20

thousand in 2009 to more than 700 thousand in 2014. Figure 1 shows the rapid expansion of

private higher education in Brazil. By 2015, FIES disbursed $5.6 billion which accounted for

15% of the annual budget of the Brazilian Ministry of Education and approximately one-sixth

of funding for private colleges.5 The median program during the time period studied enrolls

roughly a quarter of students using federal loans, and some programs are entirely reliant on

the loan program.

4Law 9.394, of December 20, 1996; and Decree 2.207, of April 15, 1997.
5The fraction of revenue coming from loans at private institutions is comparable in the United States.
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In 2015, due to budget limitations, eligibility conditions became more strict, both for stu-

dents and for institutions. On the student side, new regulations established a maximum per

capita family income of 2.5 times the minimum wage and a minimum score of 400 points in

the centralized high-school exit exam, ENEM. On the institution side, the regulation imposed a

cap on the number of students receiving FIES in each degree. Loans are distributed to incom-

ing students through a deferred acceptance mechanism, which creates degree-specific cutoffs.

Students that apply for a loan in a degree and have an ENEM score above the cutoff are eligible

to the loan. Recipients are supported for as long as they remain enrolled in the degree they

applied to and they begin to pay the loan back 18 months after graduating or dropping out.

Following the success of the FIES program in increasing college enrollment coupled with a

lowering of eligibility standards, higher education in Brazil saw growing dropout and default

rates. This trend was similar to the experience in the United States (Looney and Yannelis,

2015, 2021). Dropout rates in private institutions increased from 19% in 2011 to 23% in

2016. Figure 2 shows first-year student dropout rates. At the same time, FIES default rates

more than doubled from 19% in 2014 to 41% in 2018. Recovery rates in Brazil are low, and

high default rates coupled with rapid increases in enrollment led to significant program costs.

3.3 Skin-in-the-Game Reform

Due to concerns regarding the stability of public funds, the government announced a new

reform in 2017 that increased the liability of educational institutions. The reform was issued

through a Portaria, or Executive Action 209. Article 20 stipulates fees for universities with

high dropout and default rates. In this paper, we refer to the ordinance as the Skin-in-the-game

reform.

The reform was announced in late 2017, and mandates that, starting 2018, institutions with

high dropout and default rate have to pay an installment to the government, which can vary

from 10% to 25% of the total loan funds given to that institution. The main goal of the policy is

to inceltivize institutions to improve the quality of their courses and to improve the placement

of their students in the labor market, which would reduce default rates. The reform was aimed

at preventing loan defaults. However for the first five years dropouts were included as defaults

occur post school-separation and hence take many years to realize. Dropouts are realized more

immediately, and are strongly correlated with loan defaults as is show in Figure 3. Following

13



2023 the penalty will purely be a function of loan default rates.

Schools’ payments are determined as a function of dropout and default rates until 2023

when the formula is set to be revised and become a function entirely of loan default rates. The

parameter xs which determines the penalty that a school s will pay is defined as

xs = ζds + ξπs (14)

where d is the dropout rate and π is the share of students defaulting on their loan obligations

in the previous academic year. In the first years of the policy ζ = ξ = .5. A school’s overall

penalty is calculated as a percentage Ps, by multiplying Ps by the total transfers received from

the government through the loan program. The penalty Ps rate is determined by:

Ps =max
n

.16+ .025×
xs −µ
σ

, 0
o

(15)

where µ is the mean of x across all schools, and σ is the standard deviation of x across all

colleges participating on FIES. The penalty Ps bounded above and below by 10% and 25%.

The amounts schools might have to repay are substantial, particularly for schools heavily

reliant on the program.6 A school which invests heavily and has zero dropouts would pay

12.8% of the funds received from the FIES program. At the other end of the spectrum, a school

where half the students drop out would end up paying more than a quarter (26.5%) of FIES

funds received. Moving from the 75th (8.33%) of the 25th (33.87%) percentile in the first-year

dropout rate would translate into moving Ps from 22.0% to 14.7%, or a 7.3 percentage point

decrease in the amount of FIES funds that would be repaid by the school.

3.4 Data

In order to study how the Skin-in-the-game reform affected institutions’ admissions decisions

and overall quality, we combine several sources of administrative data in a novel link that we

describe below. The main source we utilize for our analysis is the Brazilian Higher Education

Census, which is obtained from the National Institute of Educational Research (INEP). This

database contains information on every student enrolled at any higher education institution in

Brazil. This allows us to observe the educational path of every student in any degree program

6The mean dropout rate for first-year students in our sample is 12.8%, while the standard deviation is 8.8%.
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between 2013 and 2019. In a given year, the unit of observation is at the degree-student level,

and includes a variable indicating if the individual graduated, dropped out or is successfully

enrolled at the end of the academic year, and whether the student is under any type of financial

aid. This data is of very high-quality as most institutions have their own systems integrated

with the Census in real time. In addition to the student data, this database also includes ad-

ministrative information at the level of degrees and institutions, including faculty composition,

payroll, capital costs, maintenance costs, and research investment.

We merge the education census data to test score data for the universe of students taking

the high-school exit exam, ENEM. This dataset also comes from INEP. The data cover the pe-

riod 2009-2019 and include individual-level test scores on each of the components of the test,

as well as answers to a detailed questionnaire on demographic characteristics. The results of

this exam, together with students’ self-reported preferences, are the main inputs to the de-

ferred acceptance mechanism used to allocate FIES loans. We link these to FIES administrative

records from the National Fund for Educational Development (FNDE). These contain data on

the universe of student loans provided by the federal government. It contains monthly-level

payments made by the government to each student participating in the program, as well as

information on students’ repayments.

We link this individual data to a survey of tuition prices by a large sample of degrees that

cover most of the higher education market from Hoper. We combine it with data from two ad-

ditional consulting companies, MercadoEdu and EducaInsights in order to maximize coverage.

We finally merge data to test score data of the national higher education exit exam (ENADE),

a standardized national exam that assesses major-specific content and is taken by undergrad-

uate students in their last year of college. This is obtained from INEP and provides us with

a measure of value-added. We merge individuals using student identifiers. Our final merged

data contains information on 11,687,188 students in 2,631 institutions. We collapse the data

to the institution-degree-year level.

4 Empirical Strategy and Results

In this section, we explore the core predictions of the model, that a higher penalty leads to

lower enrollment of students on government support, as well as changes in quality and the

possibility of changes in the selection of students. Specifically, we focus on the effects of the
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2017 reform on dropout rates, enrollment, and quality. We then explore whether effects on

dropout rates were driven by quality improvements or the selection of students.

4.1 Dropout Rates

We first explore dropout rates in line with Proposition 2 and Proposition 4, which predict that a

higher penalty value θ decreases the average dropout rate and that institutions that were more

reliant on federal programs decrease it more. We explore how dropout rates changed at insti-

tutions that were more or less reliant on the federal loan program. The main focus of the 2017

reform was in penalizing schools with high dropout rates. We compare the responses of schools

with differential ex-ante reliance on FIES, and which faced different incentives due to the new

program rules. The financial penalty may encourage programs with a high concentration of

FIES students to increase completions and reduce dropout rates.

More formally, to evaluate the impact of the FIES policy reform in 2017, we use degree-level

panel data to estimate variants of the difference-in-difference specification7

Ys j t = αs j +αt + β1[t > 2017]× Fs j + γ0 × Fs j + γ1 t × Fs j + εs j t (16)

Ys j t denotes the dropout rate of degree j at school s in year t. Fs j denotes the ex ante share

of students in the loan program. Fs j is calculated as the 2015–2017 average of the share of

students in FIES.8 We standardize the treatment by subtracting by the mean and dividing by

standard deviation. Again the coefficient estimates can be interpreted as the effect on the

outcome when then treatment is one standard deviation above the mean.

The degree fixed effects αs j capture degree-specific time invariant factors such as area of

study, affiliated institution, and geographical region. The year fixed effects αt capture year

specific factors that affect schools similarly. 1[t > 2017] is the post policy indicator. We

control for a linear pre-trend γ0 + γ1 t, to capture schools being on differential trends prior

to the reform. The main coefficient of interest is β , which captures the difference between

schools more or less affected by the reform due to a higher fraction of students in the federal

program, and dropout rates. We cluster standard errors at the school program level.

7We restrict our sample to undergraduate degrees at private institutions that have at least one new FIES student
every year, as they are the most relevant to the policy reform.

8We calculate the 2015–2017 average to smooth any noise, but we do not go beyond 2015 because of another
policy reform in 2014 which expanded FIES.
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The identifying assumption is a standard parallel trends assumption.9 That is, in the ab-

sence of the policy reform, outcomes would have trended similarly for schools with high and

low reliance on the federal loan program. To assess the identifying assumption that degrees

with different treatments would continue on parallel trends without the policy reform, we use

event study figures and plot the coefficients βt from the model

Ys j t = αs j +αt +
∑

τ

βτ × Fs j + γt × Fs j + εs j t (17)

where γt is a linear pre-trend, and the other variables are defined as in Equation (16).

Figure 4 shows that this is indeed the case. The figure shows estimates of the coefficient

βτ from Equation (17), along with a 95% confidence interval. The figure confirms a stable

pre-trend prior to the reform, and a drop following the 2017 policy reform. The pattern is

consistent with schools being more affected by the skin-in-the game policy reducing dropouts.

Table 2 makes this graphical evidence explicit. The table presents the estimates of the post

and treatment coefficients β from Equation (16). The outcome is the 1-year dropout rate and

the treatment is again the ex-ante fraction of students in the federal loan program. The results

in Table 2 indicate that dropout rates declined sharply in programs that are highly reliant on

the federal loan program and that the penalty incentivizes degrees with more FIES students to

reduce dropout more aggressively. As the table shows, the average FIES dropout rate is 0.8%

lower for degrees whose FIES share is one standard deviation higher. The coefficients change

little when we control for year by field of study fixed effects, as well as when we add total

enrollment as a control.

One possibility is that, to avoid paying penalties based on dropout rates, colleges are simply

passing students. Appendix Table A.2 partially addresses this concern. In Brazil, students are

required to take an exit exam called ENADE. There is little scope for schools to manipulate the

exam, as ENADE is nationally administered, and is identical for all students in a subject. If

schools were simply passing students, then test scores of graduates should decrease. The table

shows the impact of the policy reform on exit exam test scores at the student level. If schools

were lowering academic standards, we would see a decline in test scores. However, we find no

significant effect on ENADE scores. This suggests that schools are not passing weaker students

9Note that, since we only focus on a single policy our estimator does not suffer from concerns that two-way fixed
effect estimators of difference-in-difference specifications can lead to bias through negative weights on treatment
effects (Baker, Larcker and Wang, 2022).
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and lowering thresholds to graduate.

4.2 Mechanisms

The 2017 reform led to different incentives of schools with different pre-existing characteris-

tics. However, the welfare effects of the reform are theoretically ambiguous as any change in

outcomes can be driven both my quality improvements, or by changes in the type of students

enrolled. Proposition 2 shows that schools, if they respond to financial incentives, can either

improve quality or change the selection of students. The change in the dropout rate observed

in the previous section can be driven by either factor. Schools can reduce short term dropout

rates by either focusing on improving outcomes, or by selecting students less likely to drop

out of school. As described in the model, this leads to a tradeoff. Improvements in quality

may benefit students, but at the same time financial incentives may cause schools to screen out

low-income students.

Schools can reduce dropouts by accepting students with higher academic ability or improv-

ing quality. Which action schools take depends on their ex ante characteristics. Proposition 3

shows that schools that already have high cutoffs for obtaining federal funds gain relatively less

by raising the cutoff further and screening students with lower academic ability. Proposition 4

shows that schools that are already heavily reliant on federal loans are strongly incentivized

to improve quality, as their model relies on these funds and hence any penalties would greatly

affect their profits.

4.2.1 Enrollment

We evaluate the impact of financial incentives on schools and first explore enrollment. Schools

were incentivized to respond to the change in financial penalties by decreasing reliance on the

federal program, most directly by cutting enrollment in the program. Proposition 3 notes that

this was especially the case for schools with low-score cutoffs, which were already very reliant

on federal loans. We explore enrollment in the federal program before and after the reform in

2017, which penalized schools with high dropout and default rates, comparing the responses

schools with more or less reliance on FIES.

Specifically, we compare schools with different ex ante cutoffs for participation in the loan

program. Funds under the FIES program are allocated based on scores from the ENEM exam.
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Cutoffs for allocations under the federal program are determined by schools by setting test

score cutoffs. Schools set a cutoff score, and only students who scored above the cutoff can

obtain funds. As Figure 5 shows, test scores are strongly correlated with dropout rates. Since

test scores cutoffs are so strongly correlated with dropout rates, schools with a lower initial

cutoff face larger financial penalties under the reform, and hence stronger incentives to reduce

enrollment in the program.

More formally, to evaluate the impact of the FIES policy reform in 2017, we use degree-level

panel data to estimate variants of the difference-in-difference specification,10

Es j t = αs j +αt + β1[t > 2017]× Ds j + γ0 × Ds j + γ1 t × Ds j + εs j t (18)

where Es j t denotes the natural logarithm of enrolled students in the federal loan program in

degree j at school s in year t, and Ds j denotes the ex ante cutoff score for participation in

the loan program, calculated as the 2015–2017 average. We standardize the treatment by

subtracting by mean then divide by standard deviation. The ex-ante value of other variables

are also calculated in this way. We restrict our sample to undergraduate degrees at private

institutions that have at least one new FIES student every year, as they are the most relevant

to the policy reform. The degree fixed effects αs j and year fixed effects αt are as in Equa-

tion (16). 1[t > 2017] a post policy indicator. γ0 + γ1 t is a linear pre-trend. β captures the

difference between schools more or less affected by the reform due to higher ex ante cutoffs,

and enrollment. We again cluster standard errors at the school program level.

We focus on the relationship between enrollment in the federal loan program and the test

score cutoff. Since under the new policy, schools will have to pay a penalty based on dropout

rates, schools with high dropout rates are incentivized to take fewer students in the FIES pro-

gram.11 Table 3 shows estimates of the coefficient β from Equation (18). Figure 6 compares

programs that are above and below the median cutoff calculated by the 2015–2017 average.

The 2017 reform penalized schools with high dropout rates for students in the FIES program,

and hence schools that accept students with a lower cutoff would incur higher costs under the

new program rules. The table gradually adds in fixed effects.

10Note that in this specification, the treatment is test score cutoffs as opposed to reliance on FIES Fs j . We use
an alternative treatment as Fs j is calculated as the 2015–2017 average of the share of students in FIES, and hence
Fs j is a function of the outcome, enrollment.

11The appendix shows that results are similar if we use the dropout rate as the treatment Ds j . In theory we
could also use loan default rates, however this data is not available yet for more recent enrolled cohorts.
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Table 3 suggests that schools that were more sensitive to the dropout penalty reduced en-

rollment in the program following stricter accountability, consistent with the higher costs of

enrolling students who may drop-out or default post-reform. The results indicate that, under

the new policy, a one standard deviation higher test score cutoff rate above mean is associ-

ated with an additional 19% to 20% increase in students enrolled in the federal loan program.

Figure 6 shows the event study figure. It presents estimates of the coefficients βτ from Equa-

tion (17), along with a 95% confidence interval. Consistent with the effects being driven by

the policy reform, the pre-trend is stable and the coefficient dropped immediately after the

policy is enacted in 2017.

4.2.2 Decomposing Quality and Selection

We next turn to decomposing changes in dropout rates between changes in institutional quality

and selection. In order to reduce dropout rates, schools may either change the selection of

students or improve quality.12 Which action is taken depends on the ex ante characteristics

of schools. Propositions 3 and 4 show that schools with already low cutoffs may focus on

screening, and that schools that are already reliant on federal funds are incentivized to improve

quality. We exploit the fact that we can observe nearly all variables which universities use to

screen applicants.

To decompose the effect of dropouts between quality and selection, we separate observable

student characteristics from residuals affecting retention. Since we use administrative data, we

can condition on most of the factors that schools observe in selecting students. Thus any factor

not driven by selection must be driven by factors that directly affect quality, through a channel

not directly observable to schools. We first estimate

δis j t = αs j t + βX is j t + εis j t (19)

among first-year students in the federal program. The term δis j t indicates whether student i

in school program s j and year t drops out in that year. X is j t contains a vector of student char-

acteristics, including gender, race, nationality, public high school, age group, and interactions

of birth and school municipality.

12Note that schools can modify enrollment of students in FIES without changing the selection of students who
are enrolled, in terms of their propensity to dropout.

20



Then we define the estimated fixed effects as the quality and the predicted dropout as the

selection of program s j in year t,

DegreeFEs j t = α̂s j t and Selections j t =E
�

β̂X is j t | i ∈ s j t
�

. (20)

The intuition behind this approach relies on the fact that universities can select students on

observables X is j t . If schools are modifying drop-out rates through selection, then this would

occur through the set of observables on which schools can screen. Other factors which affect

student retention would occur through channels unrelated to screened students characteristics,

in other words the quality of the school in preventing dropouts.

We use the program fixed effects and the expected dropout rate based on observables as

outcome, comparing schools with differential ex ante reliance on the federal loan program.

More specifically, we estimate the following

DegreeFEs j t = αs j +αt + β1[t > 2017]× Fs j + γ0 × Fs j + γ1 t × Fs j + εs j t (21)

Selection j t = αs j +αt + β1[t > 2017]× Fs j + γ0 × Fs j + γ1 t × Fs j + εs j t . (22)

The results indicate that effects are driven by quality improvements rather than student

selection. Table 4 panel (A) and (B) show estimates of β from the equations above. The esti-

mates suggests that the quality effect dominates the selection effect, and that most of the effect

on dropout rates is driven by quality investments rather than selection on observables. The se-

lection effects are generally insignificant at conventional levels, and quite small in terms of

magnitude. In column (4) of panel (A), we can rule out that a one standard deviation increase

in the share of FIES enrollment reduces dropout rates due to selection by .04 percentage points

following the reform at the 95% level. This suggests that, despite large enrollment effects and

decreased reliance of schools which pay a higher penalty, schools do not change the selection of

students in terms of their propensity of dropping out. This may be to institutional constraints.

Most schools allocate FIES loans via test scores within a narrow range, and hence it may be

difficult to attract students less likely to dropout or otherwise changes allocations of loans.

Turning to quality, we find statistically significant and meaningful effects on our measure of

institutional quality. A one standard deviation increase in the share of enrollment in the federal

program leads to a .92 percentage point decrease in dropout rates due to changes in quality.
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Corresponding event studies are shown in Figures 7a and 7b. The figure shows estimates of βτ

from Equation (17), along with a 95% confidence interval. Like the other figures, Figures 7a

and 7b indicates that the timing of the effect closely matches the policy reform. We see flat

effects on selection, and changes in quality which match the timing of the reform.

4.2.3 Faculty-Student Ratio

While the earlier section is suggestive that schools improved quality, our measure of quality

from Equation (21) does not directly capture what institutions are changing. In this section,

we show evidence of one change that schools implement– increased faculty size. To provide

more direct evidence that schools are changing quality inputs, we explore a measure of quality

input, the faculty-student ratio. Faculty-student ratios are a standard measure of quality, see

for example Eaton, Howell and Yannelis (2020), as a large literature shows that smaller class

sizes as well as more and better faculty attention increases educational attainment (Angrist and

Lavy, 1999; Angrist, Lavy, Leder-Luis and Shany, 2019; Hoffmann and Oreopoulos, 2009).

As discussed in the previous subsection, schools heavily reliant on FIES had strong incen-

tives to improve quality, as their revenue is heavily reliant on government loans. Following

our earlier strategy, we explore how the faculty-student ration changed at schools that had dif-

ferential reliance on the federal loan program.We exclude first-year students when calculating

the faculty-student ratio, that is,

FacultyStudentRatio=
Faculty

TotalEnroll− FirstYearEnroll

because new entrants may be directly affected by the policy.

We find that, following the 2017 reform, affected schools substantially increase faculty sizes

relative to the student body. Table 4 panel (C) repeats our earlier analysis and shows estimates

of β from Equation (16). The results indicate that schools that were more reliant on FIES

increase their faculty-student ratios by approximately 7.44%. The corresponding event study

in Figure 7c shows a similar pattern to the other figures, displaying a stable pre-trend and an

immediate jump in the coefficients after the penalty was implemented.
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5 Empirical Model

5.1 Setup

This section builds a structural model, which we use to determine the optimal penalty θ . In

each year t, there are It students characterized by their exam score ri and characteristics x i.

Each student decides which degree to attend or to not attend. There are Jt degrees that charge

price p j t and offer quality q j t . Degrees are not capacity-constrained. The (decision) utility

obtained by a given student from attending degree j is given by

ui j t = −αLi j t p j t +πr̃ j ri + ξ j + ξt +∆ξ j t
︸ ︷︷ ︸

ξ j t

+εi j t (23)

where Li j t indicates whether student i receives a loan to attend degree j in period t, ξ j and

ξt are degree and year fixed effects, ∆ξ j t is an unobserved demand shock to attend degree

j in year t, r̃ j is the degree attractiveness to high score students (which we take as given),

and εi j t is an unobserved individual-level preference shock that follows a type-I extreme value

distribution. The parameter αLi j t governs students’ price sensitivity and depends on whether

the student has a loan or not.

Loan usage is determined by need-based and merit-based eligibility. Need-based eligibility

wi is assumed to be independent of εi j t , conditional on observables, and the associated eli-

gibility distribution is ρ(x i, t) ≡ P[wi = 1 | x i, t]. Merit-based eligibility is determined by a

degree-level minimum score r j t , chosen by universities. Hence, loan usage Li j t is given by:

Li j t =







1 if wi = 1 and ri ≥ ri j

0 otherwise
. (24)

The conditional probability that student i enrolls in degree j during year t is given by

si j t(wi) =
exp(−αLi j t p j t +πr̃ j ri + ξ j t)

1+
∑

k exp(−αLikt pkt +πr̃kri + ξkt)
(25)
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The share of students that decide to attend degree j is given by

s j t(p j t , r j t) =
1
It

∑

i

�

ρ(x i, t)si j t(1) + (1−ρ(x i, t))si j t(0)
�

(26)

Student i drops out from degree j if:

di j t = 1
�

q j t + νri +δ j t +∆δi j t ≥ 0
	

, (27)

where q j t is degree j’s quality, δ j t is a degree-level dropout shock, ν is a parameter, and∆δi j t is

a student-level dropout shock, assumed to be iid and to follow a Gumbel distribution. Hence,

the expected dropout rate of student i in degree j is given by:

Eidi j t =
1

1+ exp(q j t + νri +δ j t)
(28)

Therefore, the overall expected dropout from loan students in a given degree is given by

d j t(p j t , q j t , r j t) =
∑

i

Eidi j t · si j t ·ρ(x i, t)Li j t (29)

The firm problem is given by:

max
p j t ,q j t ,r j t

(p j t − c j t(q j t))s j t(p j t , r j t)− θ p j t d j t(p j t , q j t , r j t) (30)

where

c j t(q j t) = Γ (q j t − γ j t)
2 + R(r j t −υ j t)

2 +ω j t

γ j t = γ j + γt +∆γ j t

υ j t = υ j +υt +∆υ j t

ω j t =ω j +ωt +∆ω j t

(31)

and θ is the share of the tuition that universities need to pay back to the government when a

student with a loan drops out.
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5.2 Welfare

Our model accounts for two types of market imperfections. First, students that do not have

access to a loan are liquidity constrained and their demand function does not represent their

true willingness to pay. Second, the shadow cost of public funds (1+λ) can be greater that one,

which means that financing tuition with government money can be disproportionally costly.

Total welfare in this model comes from three sources:

First, we need to account for the benefit that consumers get from enrolling in their favorite

program. Students’ consumer welfare is given by:

CWi t(wi) =
1
αwi

log

�

1+
∑

k

exp(−αLikt pkt +πr̃kri + ξkt)

�

+
�

α0

α1
− 1

�

∑

j

si j t(wi(1− Li j t))p j t , (32)

Total consumer welfare is given by

CWt =
1
It

∑

i

(ρ(x i, t)CWi t(1) + (1−ρ(x i, t))CWi t(0)) (33)

Second, we need to account for the profits perceived by universities before any transfers to

the government, which are given by

Πt =
∑

j

(p j t − c j t)s j t (34)

Third, we need to account for the potential gains or losses of having the government sub-

sidizing tuition costs of dropout students:

Tt = −λ(1− θ )
∑

k

dkt pkt . (35)

Note that if λ = 0, then transfers from universities to the government are redundant for wel-

fare. When λ > 0, the shadow cost of public funds is large and it can be efficient to require

universities to cover some of the lost tuition due to dropout by increasing θ .
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Total welfare is given by the sum of these three components:

Wt = CWt +Πt + Tt . (36)

6 Estimation

6.1 Drop-out function

To estimate the parameters of Equation (28), we first run a student-level OLS regression of a

drop-out indicator on ENEM scores, degree fixed effects, and other student-level controls, such

as household income and parents’ education. The estimated degree fixed effects are q j t . The

estimated coefficient on ENEM scores is ν. Then, we estimate δ j t imposing that the observed

share of students who drop out from each degree matches the model prediction:

∑

i Eidi j t · si j t
∑

i si j t
.

6.2 Supply and demand parameters

We split our parameters into linear and non-linear parameters: Linear parameters are Θ1 ≡

{ξ j t ,ω j t ,γ j t ,υ j t ,ρ(x , t)} and non-linear parameters are Θ2 = {α0,α1,π, Γ , R}. The estimation

procedure is as follows. We estimate the non-linear parameters by finding Θ2 that satisfies

certain moment conditions (outer loop). In the search process, for each Θ2, we estimate a

corresponding Θ1 by solving a system of linear equations (inner loop). Below we describe the

inner and the outer loops. In the estimation, we use the following variables observed in the

data: ŝi j t is a dummy indicating whether student i enrolled in degree j, d̂i j t a dummy indicating

whether student i dropped out from degree j, and ŝL
i j t a dummy indicating whether student i

enrolled in degree j using a loan.

6.2.1 Outer loop

The model is non-linear and hence the parameters are jointly identified. However, each of the

non-linear parameters is strongly associated with one of the identifying moments. Below we

describe each moment and the parameter it is mostly associated with. Students’ sensitivity to
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prices (α0) is estimated using a Hausman instrument Z p
j t . The associated moment condition is

that the unobserved demand shock is uncorrelated with the instrument:

E[∆ξ j t | Z
p
j t] = 0. (37)

We estimate preference heterogeneity (π) by matching the covariance between the average

scores in each degree in the periods included in our sample with the average scores in the

baseline period (er j t):
∑

j

�

er j t ·
∑

i

ŝi j t ri

�

=
∑

j

�

er j t ·
∑

i

si j t ri

�

. (38)

To estimate the difference in price sensitivity between students with and without loans

(α1 −α0), we leverage the discontinuity in enrollment across the loan eligibility threshold r j t .

More specifically, we match the size of this discontinuity, in the model and in the data:

∑

j

 

∑

i:r j t≤ri<r j t+∆r

ŝi j t −
∑

i:r j t−∆r≤ri<r j t

ŝi j t

!

=
∑

j

 

∑

i:r j t≤ri<r j t+∆r

si j t −
∑

i:r j t−∆r≤ri<r j t

si j t

!

(39)

where ∆r is a small number.

Finally, we estimate the parameters of the cost function (Γ and R) assuming that observed

responses to the skin-in-the-game reform (documented in Section 4) are driven by colleges’

endogenous responses. That is, we assume that changes in unobserved shocks (γ j t and υ j t) are

not correlated with exposure to the policy. We implement by imposing the following moment

conditions:

E
�

∆γ j t × (post t · Fs j)
�

= 0, (40)

E
�

∆υ j t × (post t · Ds j)
�

= 0, (41)

where post t ≡ 1[t > 2017] indicates post-policy periods. Exposure to the policy is measured

by the share of students with loans Fs j and the dropout rate Ds j, both in the first period of the

sample.
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6.2.2 Inner-loop

To estimate Θ1, we impose that the observed market shares and prices reflect colleges’ and

students’ optimal decisions and we invert the associated first-order conditions. We recover ξ j t

and ρ(x , t) simultaneously by solving a system composed of two sets of equations. First, the

observed market shares match the model market shares, for each degree:

∑

i, j

ŝi j t =
∑

i, j

�

ρ(x i, t)si j t(1) + (1−ρ(x i, t))si j t(0)
�

,∀ j t, (42)

and, second, the share of students that uses loans matches the associated model-based proba-

bility, for each observable student type x:

∑

i:x i=x

∑

j

ρ(x i, t)si j t(1)

∑

i:x i=x

∑

j

ρ(x i, t)si j t(1) + (1−ρ(x i, t))si j t(0)
=

∑

i:x i=x

∑

j

ŝL
i j t

∑

i:x i=x

∑

j

ŝi j t

,∀x . (43)

Finally, we estimate degree-level cost shocks (ω j t ,γ j t ,υ j t) solving the system of equations

defined by colleges’ problem first order conditions with respect to prices:

s j t + (p j t − c j t)
∂ s j t

∂ p j t
= θ p j t

∂ d j t

∂ p j t
+ θd j t , (44)

quality:

−2Γ (q j t − γ j t)s j t = θ p j t

∂ d j t

∂ q j t
, (45)

and the cutoff score:

(p j t − c j t)
∂ s j t

∂ r j t
− 2R(r j t −υ j t)s j t = θ p j t

∂ d j t

∂ r j t
. (46)

6.3 Estimated parameters

In this section, we present the parameter estimates from the model. The estimates are sum-

marized in Table 5 and below we discuss each of them. On the demand side, the estimated

price parameters (α1 and α0) imply that the median price elasticity of demand from students

with and without loans is, respectively, 0.27 and 1.59. This shows that loans substantially re-
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duce students’ sensitivity to price changes. The estimated π implies that the median student is

willing to pay 1.10% more for a one standard deviation increase in er. On the supply side, we

find that a one standard deviation increase in quality reduces dropout rates by 1.6pp (9.7%).

Moreover, deviations from the quality and FIES cutoff bliss points (γ j t and ν j t) explain only

0.001% and 0.0001% of the variation in marginal costs, respectively.

7 Counterfactuals

We use our model to quantify the impact of varying the penalty on student welfare. We express

our findings in terms of US dollars per student relative to a regime without the skin-in-the-

game policy in place (i.e., θ = 0). We present the results in Figure 8. The overall welfare is

maximized at θ ∗ = 0.5, which coincides with the penalty implemented in the current Brazilian

policy.

We also find that student welfare follows an inverted U-shape pattern, which reflects the

tensions between the different economic forces induced by the policy. For θ < θ ∗, student

welfare increases with the size of the penalty, suggesting that steeper penalties induce colleges

to improve quality with the aim of reducing their dropout rates. When θ > θ ∗, raising the

penalty is no longer effective, as colleges prefer screening out lower-scoring students instead

of increasing their quality. Finally, it is noteworthy that the policy improves student welfare for

all values of θ ∈ [0,1], which suggests that the effect on college quality dominates the effect

of student selection for any penalty θ .

8 Concluding Remarks

This paper studies how financial incentives influence schools’ decisions to improve quality and

select students. We provide both a theoretical framework to analyze this tradeoff, and empirical

evidence using administrative Brazilian data and a policy reform. We find that penalizing

schools with high-dropout rates led to a decrease in dropout rates, and that this was driven

by quality improvements for schools reliant on federal funds. This came at some cost, as

schools more sensitive to the penalty cut enrollment of students reliant on these funds, although

preliminary results suggest that selection effects are much smaller than quality improvements.

There exists ample room for future work. We focus on a reform that penalized schools with
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high dropout and default rates. However, there are other margins which could be considered

in terms of changing school incentives. In particular, if policies can be linked to the value-

added of schools, which is often unobservable, incentives could directly be linked to returns.

Additionally income-share-agreements between schools and students might align incentives, at

the cost of exacerbating information asymmetries. Future work should focus on how student,

school and social incentives can be aligned to design an optimal human capital investment

system.
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Figure 1: The Expansion of Private Higher Education

Note: This figure shows the number of incoming higher-education students in each year in Brazil,
by type of institution (private, state, or federal). The vertical line marks a reform that allowed the
entry of for-profit institutions. Source: Census of Higher Education.
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Figure 2: Dropout Trends Over Time

Note: This figure shows the 1-year dropout rate of private degrees, FIES degrees, and FIES students
from 2013 to 2019. The vertical line shows the 2017 policy reform.

35



Figure 3: FIES dropout and default by area of study

Note: The figure plots the 1-year FIES dropout rate in 2017 against the 90-day FIES delinquency
rate (by value) for the main 10 area of studies in July 2020. The size of the bubble indicates the
total loan balance of the corresponding area of study. The FIES dropout rate is calculated from
Census Data.
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Figure 4: Dropout Dynamics

Note: This figure shows the coefficients βt from Equation (17). The outcome is the 1-year FIES
dropout rate. We split the sample by median of the ex-ante (2015–2017 average) FIES share, then
assign those above median as the treatment group, Ds j = 1, and those below as the control group,
Ds j = 0. The sample is restricted to undergraduate degrees at private institutions that have at least
one new FIES student every year. The observations are weighted by total enrollment. We acontrol
for a linear pre-trend, and normalize the coefficients in 2014 and 2017. The error bars depict a
95% confidence interval. Standard errors are clustered at the degree level. The vertical line shows
the 2017 policy reform.
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Figure 5: Response of Dropout Rate to Increasing FIES Cutoff
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Note: The figure shows the change in the predicted 1-year dropout rate of the marginal student if
degree increases FIES cutoff by 1 score bin (50 points), where the marginal student refers to the
student whose ENEM score is equal to the cutoff. The predicted dropout rate is computed by first
regressing dropout δ on student ENEM score e and degree FIES cutoff f , controlling for degree fixed
effects and an indicator of whether a student attends public high school (as a proxy for income).
Then the predicted dropout rate is calculated as a function of ENEM score and FIES cutoff, δ̂(e, f ).
The predicted dropout rate of the marginal student is δ̂( f , f ). If the FIES cutoff is increased by∆ f ,
then the predicted dropout of the marginal student is changed to δ̂( f +∆ f , f ). This figure plots
∆δ̂ = δ̂( f +∆ f , f )− δ̂( f , f ) as a function of f , with ∆ f = 50 (1 score bin).
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Figure 6: Enrollment Dynamics (FIES cutoff)

Note: This figure shows the coefficients βt from Equation (17). The outcome is the log number of
new FIES students. We split the sample by median of the ex-ante (2016–2017 average) ENEM cutoff
for FIES, then assign those above median as the treatment group, Ds j = 1, and those below as the
control group, Ds j = 0. The sample is restricted to undergraduate degrees at private institutions that
have at least one new FIES student every year. The observations are weighted by total enrollment.
We control for a linear pre-trend, and normalize the coefficients in 2014 and 2017. The error bars
depict a 95% confidence interval. Standard errors are clustered at the degree level. The vertical
line shows the 2017 policy reform.
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Figure 7: Selection and Quality Dynamics

(a) Selection

(b) Degree Fixed Effects (c) Faculty-Student Ratio

Note: This figure shows the coefficients βt from Equation (17). In panel (A) and (B), the outcome
is the selection and the degree fixed effects, respectively, obtained from Equation (19). In panel (C),
the outcome is the log faculty-student ratio, where we exclude first-year enrollment when calculat-
ing the number of students because it is likely endogenous. We split the sample by median of the
ex-ante (2015–2017 average) FIES share, then assign those above median as the treatment group,
Ds j = 1, and those below as the control group, Ds j = 0. The sample is restricted to undergraduate
degrees at private institutions that have at least one new FIES student every year. The observations
are weighted by total enrollment. We acontrol for a linear pre-trend, and normalize the coefficients
in 2014 and 2017. The error bars depict a 95% confidence interval. Standard errors are clustered
at the degree level. The vertical line shows the 2017 policy reform.
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Figure 8: Counterfactual Student Welfare

Note: The figure shows the counterfactual consumer welfare per student for 0 < θ < 1, outlined
in Section 5.2. The vertical dotted line shows the optimal value of θ in 2018.
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Table 1: Summary Statistics

Mean Std. Dev. Min Median Max

Enrollment and FIES share
Total enrollment 379.84 330.90 30.00 292.33 6036.33
First-year enrollment 92.54 80.09 9.00 72.67 1490.00
First-year FIES enrollment 21.35 20.01 1.33 15.67 285.33
First-year FIES share 0.26 0.16 0.01 0.23 1.00

1-year dropout rate (%)
FIES degrees 12.80 8.83 0.00 12.10 59.37
FIES students 4.46 6.39 0.00 2.33 83.33

Quality
Faculty-student ratio 0.11 0.10 0.01 0.08 1.22
FIES cutoff 502.20 42.09 406.32 494.04 763.06

Price
Tuition (2018 USD) 3257.45 1948.98 880.19 2935.45 24819.27

Test score
ENADE 43.69 13.88 0.3 43.3 93.2

Note: Summary statistics (ex-ante, 2015–2017 average) of the census data. The sample is restricted
to undergraduate degrees at private institutions that have at least one FIES student every year.

42



Table 2: Dropout Estimates

(1) (2) (3) (4) (5)

Fs j × 1[t > 2017] −0.0065** −0.0078*** −0.0083*** −0.0075** −0.0078***
(0.0021) (0.0021) (0.0021) (0.0022) (0.0022)

Year Yes
Year FE Yes Yes Yes Yes
Degree FE Yes Yes Yes Yes Yes
Year × Field of Study FE Yes Yes
Control Yes Yes

Observations 29,309 29,309 29,205 29,309 29,205
Note: The table shows the impact of the 2017 FIES policy reform. The columns show the regression estimates from
variants of Equation (16), which describe 1-year FIES dropout rate as a function of ex-ante FIES share, a post-policy
indicator, and their interaction, which is the treatment effect. The sample is restricted to undergraduate degrees at
private institutions that have at least one FIES student every year. Observations are weighted by total enrollment.
Standard errors are clustered at the degree level. The inclusion of fixed effects and controls is denoted beneath each
specification. *** p < 0.001 ** p < 0.01 * p < 0.05 ⋆p < 0.1. Source: INEP.
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Table 3: Enrollment Estimates (FIES cutoff)

(1) (2) (3) (4) (5)

Ds j × 1[t > 2017] 0.2022*** 0.1903*** 0.1809*** 0.1920*** 0.1843***
(0.0233) (0.0206) (0.0207) (0.0209) (0.0211)

Year Yes
Year FE Yes Yes Yes Yes
Degree FE Yes Yes Yes Yes Yes
Year × Field of Study FE Yes Yes
Control Yes Yes

Observations 28,840 28,840 28,738 28,840 28,738
Note: The table shows the impact of the 2017 FIES policy reform. The columns show the regression estimates from
variants of Equation (16), which describe new FIES enrollments as a function of ex-ante ENEM cutoff for FIES, a post-
policy indicator, and their interaction, which is the treatment effect. The sample is restricted to undergraduate degrees
at private institutions that have at least one FIES student every year. Observations are weighted by total enrollment.
Standard errors are clustered at the degree level. The inclusion of fixed effects is denoted beneath each specification.
*** p < 0.001 ** p < 0.01 * p < 0.05 ⋆p < 0.1. Source: INEP.
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Table 4: Selection and Quality Dynamics

(A) Degree Selection

(1) (2) (3) (4) (5)

Fs j × 1[t > 2017] −0.0008⋆ −0.0006 −0.0006 −0.0004 −0.0004
(0.0004) (0.0004) (0.0004) (0.0004) (0.0004)

Observations 13,818 13,818 13,766 13,818 13,766

(B) Quality

(1) (2) (3) (4) (5)

Fs j × 1[t > 2017] −0.0066** −0.0092*** −0.0095*** −0.0092*** −0.0093***
(0.0025) (0.0024) (0.0024) (0.0026) (0.0026)

Observations 13,818 13,818 13,766 13,818 13,766

(C) Faculty Student Ratio

(1) (2) (3) (4) (5)

Fs j × 1[t > 2017] 0.0652*** 0.0906*** 0.0306*** 0.0744*** 0.0227***
(0.0084) (0.0080) (0.0063) (0.0079) (0.0065)

Observations 28,588 28,588 28,588 28,588 28,588

Year Yes
Year FE Yes Yes Yes Yes
Degree FE Yes Yes Yes Yes Yes
Year × Field of Study FE Yes Yes
Control Yes Yes
Note: The table shows the impact of the 2017 FIES policy reform. Panel (A) shows the regression estimates from
Equation (22), which describe degree selection (see Equation (20)) as a function of ex-ante 1-year FIES share, a post-
policy indicator, and their interaction, which is the treatment effect. Panel (B) shows the regression estimates from
Equation (21), which describe degree fixed effects (see Equation (20)) as a function of ex-ante 1-year FIES share, a
post-policy indicator, and their interaction, which is the treatment effect. Panel (C) shows the regression estimates from
Equation (16), which is the same as panel (B) except the outcome is faculty-student ratio. The sample is restricted to
undergraduate degrees at private institutions that have at least one FIES student every year. Observations are weighted
by total enrollment. Standard errors are clustered at the degree level. The inclusion of fixed effects and controls is
denoted beneath each specification. *** p < 0.001 ** p < 0.01 * p < 0.05 ⋆p < 0.1. Source: INEP.

45



Table 5: Estimated Parameters

Demand Dropout Cost

α0 1.8244 κ = 1 Γ 0.0787
(tbc) (by def) (tbc)

α1 0.3059 ν 1.1468 R 8.3509
(tbc) (0.0163) (tbc)

π 49.6142 δ j t (avg) 1.3701 γ j t (avg) −0.0184
(tbc) [0.9798] [0.1472]

ξ j t (avg) −6.5551 ν j t (avg) 0.3902
[1.8526] [0.1517]

ω j t (avg) 0.3619
[4.0457]

Note: The table shows the estimates of the demand, dropout, and cost parameters. α0 and α1 are
the price coefficient of demand for students not eligible and eligible for loan respectively. π is the
score coefficient of demand. κ and ν are the quality and score coefficient of dropout respectively,
where κ = 1 by construction. Γ and R are the quality and cutoff coefficients of cost. The standard
errors are shown in parenthesis. The table also shows the mean of the estimated demand fixed
effects ξ j t , dropout fixed effects δ j t , quality bliss point γ j t , cutoff bliss point ν j t , and cost fixed
effects ω j t . Standard deviations are shown in brackets. Cost is BRL. Test scores are rescaled to the
range [0, 1].
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Figure A.1: FIES share by meso region
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Note: The figure shows the FIES share of incoming students in each meso region.
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Figure A.2: Distribution of FIES share across degrees

(a) Including non-FIES degrees

(b) Excluding non-FIES degrees

Note: This figure shows the distribution of the share of students with FIES across degrees. Panel
(A) includes the degrees with no FIES students. Panel (B) excludes those degrees.
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Figure A.3: Enrollment Dynamics (FIES dropout)
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Note: This figure shows the coefficients βt from Equation (17). The outcome is the log number of new FIES students.
We split the sample by median of the ex-ante (2015–2017 average) 1-year FIES dropout rate, then assign those above
median as the treatment group, FiesDropout j = 1, and those below as the control group, FiesDropout j = 0. The sample
is restricted to undergraduate degrees at private institutions that have at least one new FIES student every year. The
observations are weighted by total enrollment. We also control for a linear pre-trend, and normalize the coefficients with
the year 2014 and 2017. The error bars depict a 95% confidence interval. Standard errors are clustered at the degree
level. The vertical line shows the 2017 policy reform.
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Table A.1: Enrollment Estimates (FIES dropout)

(1) (2) (3) (4) (5)

Ex-ante FIES dropout −0.0161 −0.0644** −0.0587** −0.0617** −0.0586**
×1[t > 2017] (0.0207) (0.0210) (0.0210) (0.0210) (0.0210)

Year Yes
Year FE Yes Yes Yes Yes
Degree FE Yes Yes Yes Yes Yes
Year × Field of Study FE Yes Yes
Control Yes Yes

Observations 29,309 29,309 29,205 29,309 29,205
Note: The table shows the impact of the 2017 FIES policy reform. The columns show the regression estimates from
variants of Equation (16), which describe new FIES enrollments as a function of ex-ante 1-year FIES dropout rate, a post-
policy indicator, and their interaction, which is the treatment effect. The sample is restricted to undergraduate degrees
at private institutions that have at least one FIES student every year. Observations are weighted by total enrollment.
Standard errors are clustered at the degree level. The inclusion of fixed effects is denoted beneath each specification.
*** p < 0.001 ** p < 0.01 * p < 0.05 ⋆p < 0.1. Source: INEP.
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Table A.2: Exit Exam Scores

(1) (2) (3) (4)

Ex-ante FIES share −0.051 −0.048
×1[t > 2017] (0.032) (0.033)

Ex-ante FIES dropout −0.019 −0.018
×1[t > 2017] (0.033) (0.033)

Year FE Yes Yes Yes Yes
Degree FE Yes Yes Yes Yes
Year × Field of Study FE Yes Yes
Control Yes Yes Yes Yes
Observations 194,813 194,813 194,813 194,813

Note: The table shows the impact of the 2017 FIES policy reform. The columns show the difference-in-difference
estimates where the outcome is exit exam (ENADE) test score, standardized using the mean and standard deviation
from 2012 to 2019. In Column (1)–(2), the treatment is the ex-ante FIES share. In Column (3)–(4), the treatment is
the ex-ante FIES dropout rate. We control for student characteristics including gender, race, age group, family income,
parents education, attendence of public high school, and FIES status. The data cover all students who took the exit exam
in each year, but we restrict the sample to students who attended undergraduate degrees at private institutions that have
at least one FIES student every year. Standard errors are clustered at the degree level. The inclusion of fixed effects are
denoted beneath each specification. *** p < 0.001 ** p < 0.01 * p < 0.05 ⋆p < 0.1. Source: INEP.
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