Equilibrium Effects of Food Labeling Policies

Nano Barahona Cristóbal Otero Sebastián Otero

February 11, 2023

The war against obesity

• Obesity rates have tripled since 1975

• Dietary factors are a leading cause of obesity

• Governments are exploring policies to improve nutritional intake

• Increasingly popular policy is to implement food labels

2. How do supply-side responses affect the potential benefits of food labels?

- 2. How do supply-side responses affect the potential benefits of food labels?
 - Affect **prices** through product differentiation and market power
 - Induce the use of healthier ingredients to avoid labels
 - ⇒ *Equilibrium effects* of food labels are ambiguous

2. How do supply-side responses affect the potential benefits of food labels?

3. How do food labels compare to alternative policy instruments?

The Chilean Food Act

- We study a national food labeling regulation passed in Chile in 2016:
 - Mandates food labels on all processed foods that: surpass threshold in **sugar**, **calorie**, **sodium**, and **saturated fat** concentration

Overview of results

1. Reduction in sugar and calorie intake of 9% and 7% due to the policy

Overview of results

1. Reduction in sugar and calorie intake of 9% and 7% due to the policy

- 2. Descriptive evidence from the cereal market
 - Consumers: Substitute from labeled to unlabeled products
 - Stronger effect for products mistakenly believed to be healthy
 - Firms: Change prices and reformulate their products

Overview of results

1. Reduction in sugar and calorie intake of 9% and 7% due to the policy

2. Descriptive evidence from the cereal market

- 3. Model of supply and demand for cereal
 - Policy effects: Increases in consumer welfare by 1.8% of total expenditure
 - **Decomposition**: Role of demand and supply
 - Counterfactuals: Compare food labels to sugar taxes

Related literature

1. Consumer choice in settings of imperfect information

- Hastings and Weinstein (2008), Abaluck and Gruber (2011), Abaluck (2011), Woodward and Hall (2012), Allcott (2013), Handel and Kolstad (2015), Allcott and Knittel (2019)
- $\rightarrow\,$ Consumers beliefs are crucial for policy effectiveness

Related literature

1. Consumer choice in settings of imperfect information

- 2. Quality disclosure and certification
 - Dranove et al. (2003), Jin and Leslie (2003), Greenstone et al. (2006), Dranove and Jin (2010), Roe et al. (2014), Ito and Sallee (2018), Houde (2018)
 - \rightarrow Framework to study equilibrium effects of mandatory disclosure policies

Related literature

1. Consumer choice in settings of imperfect information

- 2. Quality disclosure and certification
- 3. Policies to improve consumers' nutritional intake
 - Food labels: Sacks et al. (2009), Kiesel and Villas-Boas (2013), Zhu et al. (2015), Taillie et al., (2020), Araya et al. (2020), Pachali et al. (2020), Alé-Chilet and Moshary (2020)
 - Information on Menus: Elbel et al. (2009), Wisdom et al. (2010), Bollinger et al. (2011), Finkelstein et al. (2011)
 - Advertising: Ippolito and Mathios (1990,1995), Dubois et al. (2017a)
 - Taxes: Dubois et al. (2017b), Allcott et al. (2019), Aguilar et al. (2020)
 - \rightarrow (i) Equilibrium framework, (ii) Role of beliefs (iii) Policy counterfactuals

This Talk

- Data
- Descriptive evidence
- Model
- Estimation
- Results

Data

- 1. Prices and quantities
 - Walmart-Chile scanner data (2015-2018)
 - Panel of 524,000 consumers that shop at Walmart regularly
- 2. Nutritional content
 - Hand-collected data two snapshots: before (2016) and after (2018)
 - Coverage: 90% of revenue of packaged products and 94% in the cereal market
- 3. Beliefs about nutritional content
 - We conducted an online survey in Argentina to 1,500 customers

This Talk

• Data

• Descriptive evidence

- Overall changes in nutritional intake
- Zoom in on the breakfast cereal market
- Model
- Estimation

• Results

- Sugar and calorie intake per dollar spent decreased 9% and 7% respectively
- Channels: 1. between-category subs., 2. within-category subs., 3. product reformulation

- Sugar and calorie intake per dollar spent decreased 9% and 7% respectively
- Channels: 1. between-category subs., 2. within-category subs., 3. product reformulation

- Sugar and calorie intake per dollar spent decreased 9% and 7% respectively
- Channels: 1. between-category subs., 2. within-category subs., 3. product reformulation

- Sugar and calorie intake per dollar spent decreased 9% and 7% respectively
- Channels: 1. between-category subs., 2. within-category subs., 3. product reformulation

The breakfast cereal market

- Product: all bar codes with same name and brand (e.g. "Honey Nut Cheerios")
- We estimate the following regression

$$\log(q_{jst}) = \sum_{k} \beta_k L_j \mathbb{1}_{\{k=t\}} + \gamma \log(p_{jst}) + d_{js} + \delta_t + \varepsilon_{jst}$$

- q_{jst} are total grams of product j sold in supermarket s in period t (8 weeks long)
- L_j is defined as whether the product gets any label (as in 2018)
- Observations are weighted by pre-policy revenue
- Standard errors clustered at the product level

- Product: all bar codes with same name and brand (e.g. "Honey Nut Cheerios")
- We estimate the following regression

$$\log(q_{jst}) = \sum_{k} \beta_{k} L_{j} \mathbb{1}_{\{k=t\}} + \gamma \log(p_{jst}) + d_{js} + \delta_{t} + \varepsilon_{jst}$$

- q_{jst} are total grams of product j sold in supermarket s in period t (8 weeks long)
- L_j is defined as whether the product gets any label (as in 2018)
- Observations are weighted by pre-policy revenue
- Standard errors clustered at the product level

- Product: all bar codes with same name and brand (e.g. "Honey Nut Cheerios")
- We estimate the following regression

$$\log(q_{jst}) = \sum_{k} \beta_{k} L_{j} \mathbb{1}_{\{k=t\}} + \gamma \log(p_{jst}) + d_{js} + \delta_{t} + \varepsilon_{jst}$$

- q_{jst} are total grams of product j sold in supermarket s in period t (8 weeks long)
- L_j is defined as whether the product gets any label (as in 2018)
- Observations are weighted by pre-policy revenue
- Standard errors clustered at the product level

- Product: all bar codes with same name and brand (e.g. "Honey Nut Cheerios")
- We estimate the following regression

$$\log(q_{jst}) = \sum_{k} \frac{\beta_{k} L_{j} \mathbb{1}_{\{k=t\}} + \gamma \log(p_{jst}) + d_{js} + \delta_{t} + \varepsilon_{jst}}{\delta_{t} + \varepsilon_{jst}}$$

- q_{jst} are total grams of product j sold in supermarket s in period t (8 weeks long)
- L_j is defined as whether the product gets any label (as in 2018)
- Observations are weighted by pre-policy revenue
- Standard errors clustered at the product level

• Relative decrease in demanded quantities for labeled products of 26.4% on average

any label

Descriptive evidence: The role of beliefs

- The correlation between beliefs about sugar and true sugar content is 0.73
- The correlation between beliefs about calories and true calorie content is 0.28

Descriptive evidence: The role of beliefs

- We divide product between labeled and unlabeled
- We split labeled products between above- and below-median in calorie beliefs

Descriptive evidence: The role of beliefs

• Products perceived as healthy that received a label were more affected

Descriptive evidence: Supply side - product reformulation

- Firms reformulated products to avoid receiving labels
- 33% and 23% of "high-in" products in sugar and calories respectively crossed the threshold

Descriptive evidence: Supply side - product reformulation

- Firms reformulated products to avoid receiving labels
- 33% and 23% of "high-in" products in sugar and calories respectively crossed the threshold

Descriptive evidence: Supply side - changes in prices

- Unlabeled products increased price relative to labeled ones
- Mix between: responses to changes in demand + increase in production costs

any label

Descriptive evidence: Takeaways

- Demand for unlabeled products increased 26% relative to labeled ones
 - Beliefs play a key role in shaping demand
- Firms reacted by changing prices and reformulating products
 - Average sugar and calorie concentration decreased in 12% and 3%
 - Average price of unlabeled products increased 5.5% relative to labeled ones

Descriptive evidence: Takeaways

- Demand for unlabeled products increased 26% relative to labeled ones
 - Beliefs play a key role in shaping demand
- Firms reacted by changing prices and reformulating products
 - Average sugar and calorie concentration decreased in 12% and 3%
 - Average price of unlabeled products increased 5.5% relative to labeled ones
- We develop and estimate a model to:
 - Incorporate findings into an equilibrium framework
 - Disentangle the role of demand and supply
 - Study optimal policy design and compare to alternative policy instruments

This Talk

• Data

- Descriptive evidence
- Model
 - Demand
 - Supply
- Estimation
- Results

Model: Demand

• Utility obtained by individual *i* when purchasing product *j*:

$$u_{ijt} = \underbrace{\delta_{ijt}}_{\text{experience/taste}} - \underbrace{\alpha_i p_{jt}}_{\text{price paid}} - \underbrace{w_{jt} \phi_i}_{\text{health consequences}}$$
• Utility obtained by individual *i* when purchasing product *j*:

- 1. δ_{ijt} : is immediately observed by the consumer
 - Includes taste, relief of hunger, social status, or any other short term benefit of consuming the good

• Utility obtained by individual *i* when purchasing product *j*:

- 2. $\alpha_i p_{jt}$: disutility from paying price p_{jt}
 - α_i is the parameter that governs the price elasticity

• Utility obtained by individual *i* when purchasing product *j*:

- 3. $w_{jt}\phi_i$: long term damage from consuming unhealthy products
 - w_{jt} is a vector of the nutritional content of product j
 - We assume that consumers know ϕ_i but only observe $\mathbb{E}_i[w_{jt}|L_{jt}]$, where
 - \mathbb{E}_i is defined over π_{ji} , the distribution of prior beliefs of consumer *i* over product *j*'s nutritional content
 - $L_{jt} \in \{pre, no, yes\}$ is the labeling status of product j (pre policy, not labeled after policy, labeled after policy)

• Taking expectation over u_{ijt} , the expected utility is

$$\mathbb{E}_i[u_{ijt}] = \delta_{ijt} - \alpha_i p_{jt} - \mathbb{E}_i[w_{jt}|L_{jt}]\phi_i$$

• The set of consumers buying product *j* in market *t* is given by:

$$\Theta_{jt} = \{i : \mathbb{E}_i[u_{ijt}] \geq \mathbb{E}_i[u_{ikt}] \ \forall k \in \{0, .., J\}\}$$

• Market share of product j in market t is given by $s_{jt}(\mathbf{p}_t, \mathbb{E}[\mathbf{w}_t | \mathbf{L}_t])$

Model: Supply

- Key assumption: Products are characterized by an invariant taste level
 - Achieved by combining critical nutrients w_{it} with other substitute inputs
 - We denote by ν_i the optimal amount of w_{it} to achieve taste at minimum cost

• In each period, firms choose prices and nutritional content to maximize profits

$$\max_{\{p_{jt}, w_{jt}\}_{j \in \mathfrak{V}_j}} \sum_{j \in \mathfrak{V}_j} (p_{jt} - c_{jt}(w_{jt})) \cdot s_{jt}(\mathbf{p_t}, \mathbb{E}[\mathbf{w_t}|\mathbf{L_t}])$$

where $c_{jt}(w_{jt})$ is minimized at ν_j

Model: Supply

• In the absence of the policy, firms solve:

$$\max_{\{p_{jt}, w_{jt}\}_{j \in \mathfrak{V}_j}} \sum_{j \in \mathfrak{V}_j} (p_{jt} - c_{jt}(w_{jt})) \cdot s_{jt}(\mathbf{p_t}, \mathbb{E}[\mathbf{w_t}])$$

• From the first order conditions, we have:

$$egin{array}{rcl} w_{jt}^{*} &=&
u_{j} \ p_{jt}^{*} &=& c_{jt}(w_{jt}^{*}) + \Delta^{-1}_{(j,\cdot)} \mathbf{s}_{t} \end{array}$$

where the (j, k) element of Δ is given by:

$$\Delta_{jk} = egin{cases} rac{-\partial s_k}{\partial p_j} & ext{if } k \in \Im_j \\ 0 & ext{otherwise} \end{cases}$$

Model: Supply

- When we introduce labels, demand $s_{jt}(\mathbf{p}_t, \mathbb{E}[\mathbf{w}_t|\mathbf{L}_t])$ becomes discontinuous in w_{jt}
 - Previous first order conditions might not hold with equality

- Firms have incentives to bunch below the threshold to get rid of the labels
 - Firms closer to the threshold are more likely to bunch

This Talk

• Data

- Descriptive evidence
- Model
- Estimation
 - Demand
 - Supply
- Results

Demand estimation: Parametrization

- We split consumers into two consumer-type bins $b \in \{\text{low SES}, \text{high SES}\}$
- The expected utility is given by:

$$\mathbb{E}_{b}[u_{ijt}] = -\alpha_{i}p_{jt} - \mathbb{E}_{b}[w_{jt}|L_{jt}]'\phi_{i} + \underbrace{\beta_{i}r_{j} + \delta_{jb} + \delta_{T(t)b} + \delta_{S(t)b} + \xi_{jtb} + \epsilon_{ijt}}_{\text{experience/taste}}$$

- where $\begin{bmatrix} \alpha_i & \phi'_i \end{bmatrix}' \sim \log \mathcal{N}\left(\begin{bmatrix} \alpha_b & \phi_b' \end{bmatrix}', \sum_{\alpha, \phi}\right)$ and $\beta_i \sim \mathcal{N}\left(0, \sum_{\beta}\right)$
- r_j is product j's subcategory (e.g. plain, sugary, chocolate, oatmeal, granola)
- $\epsilon_{ijt} \sim$ GEV (nested logit) with intra-nest correlation ho (inside vs outside goods)
- $\mathbb{E}_{b}[\cdot]$ is defined over prior beliefs π_{jb} , that are given by a normal distribution $\mathcal{N}(\mu_{jb}, \Omega_{jb})$
- Bayesian consumers update posteriors taking the labels as a binary signal

Demand estimation: Identification

- α_b : Instrument for prices (\hat{p}_{jt})
 - We construct instruments using international commodity prices (corn, wheat, oat) interacted with the content of each commodity in product *j*
- ϕ_b : Variation in labeling status across and within products
 - We interact a predictor for labeling status \hat{L}_j with a post dummy
 - We construct \hat{L}_j via random forest using r_j and pre-policy nutritional content
- $(\rho, \sum_{\alpha, \phi}, \sum_{\beta})$: Variation in other products' demand shifters - $z_t^{r,1} = \underset{j \in r,t}{\text{mean}} \{\hat{p}_{jt}\}, \quad z_t^{r,2} = \underset{j \in r,t}{\text{pctile}} \{\hat{p}_{jt}\}, \quad z_t^{r,3} = \sum_{j \in r,t} \mathbb{1}\{t \ge \tau_{jt}\}$
- (μ_{jb}, Ω_{jb}) : Combination of beliefs' survey with additional moment conditions

Demand estimation: Results

• The average consumer buys 5.2kg of cereal, spending \$25 a year

- The average own-price elasticity is -3.09
- Keeping taste constant, an average consumer is willing to pay:
 - 10% extra (\$2.5 a year) to reduce sugar content in 1sd
 - 7.6% extra (\$1.9 a year) to reduce calorie content in 1sd
- Original Cheerios have 2sd less sugar than Honey Nut Cheerios

Supply estimation

- Marginal cost is given by $c_{jt}(w)$, where $\nabla c_{jt}(\nu_j) = 0$
- We use a second order Taylor approximation around ν_i

$$c_{jt}(w) = \bar{c}_{jt} + (w - \nu_j)' \Lambda_j (w - \nu_j)$$

- From the first order conditions we can recover $c_{jt}(w_{jt})$ and $\nu_j = w_{j,pre}$
- From equilibrium, we find cost at which firms are indifferent between bunching and not

• Assuming
$$\Lambda_j = \begin{bmatrix} \lambda_{jc} & 0\\ 0 & \lambda_{js} \end{bmatrix}$$
 and that $\lambda_{jk} \sim \log \mathcal{N}(\mu_{\lambda_k}, \sigma_{\lambda_k})$, we can estimate $(\mu_{\lambda_k}, \sigma_{\lambda_k})$ via GMM: $\mathbb{E}_{\Lambda}[B_j - Pr(c_{jt}(\bar{w}) < c_j^{ind})|\nu_j] = 0$, where B_j indicates whether the product bunched and c_j^{ind} is the cost at which the firm is indifferent between bunching or not.

Supply estimation: Results

- Products bunching in sugar decreased sugar content in 0.6sd (8gr/100gr)
 - Marginal cost increased 8.8% on average (4.4% of final price)

- Products bunching in calories decreased calorie content 1sd (25kcal/100gr)
 - Marginal cost increased 8.7% on average (3.9% of final price)

This Talk

- Data
- Descriptive evidence
- Model
- Estimation
- Results
 - Policy decomposition
 - Policy counterfactuals

Policy decomposition

- We run **counterfactuals** to answer:
 - What are the effects of labels in the absence of supply-side responses?
 - How does product differentiation and market power affect final prices?
 - How product reformulation can
 - \rightarrow amplify the positive effects on nutritional intake
 - $\rightarrow\,$ increase consumer prices as a result of increased production costs
- Study **policy design** by changing regulatory thresholds
- Compare food labels to sugar taxes

Policy decomposition: Normative assumptions

• Our model can accommodate additional market imperfections

- Externalities: Financial health-care costs, moral hazard
- Internalities: Lack of self-control, time-inconsistency, misinformation about ϕ_i
- · We add them to our model by having the following setup

Expected utility: $\mathbb{E}_{b}[u_{ijt}] = \delta_{ijt} - \alpha_{i}p_{jt} - \mathbb{E}_{b}[w_{jt}|L_{jt}]'\phi_{i}$ Social planner utility: $u_{ijt} = \delta_{ijt} - \alpha_{i}p_{jt} - w'_{jt}\phi_{i}\lambda$

• We focus on the case where $\lambda = 1$ (i.e. no additional market imperfections)

• We estimate outcomes under four scenarios:

Counterfactual	Description
(0) no intervention	No intervention
(1) demand only	Labels & no supply responses
(2) price response	(1) + firms choose prices (p_{jt})
(3) equilibrium	$(1) + (2) +$ firms choose nutritional content (w_{jt})

• We estimate outcomes under four scenarios:

Counterfactual	Description
(0) no intervention	No intervention
(1) demand only	Labels & no supply responses
(2) price response	(1) + firms choose prices (p_{jt})
(3) equilibrium	$(1) + (2) +$ firms choose nutritional content (w_{jt})

• We measure average yearly consumer welfare in dollars using the social planner utility

$$CW = \frac{1}{\mathcal{I}} \sum_{i} \frac{1}{\alpha_{i}} \sum_{j} \left\{ \int_{\Theta_{jt}} (\delta_{ijt} - \alpha_{i} p_{jt} - w'_{jt} \phi_{i} \lambda) dP(\epsilon) \right\}$$

where $\Theta_{bjt} = \{i \in b : j \succeq_i k, \forall k\}$

• We study the effects of the policy under four scenarios:

Counterfactual	Description
(0) no intervention	No intervention
(1) demand only	Labels & no supply responses
(2) price response	(1) + firms choose prices (p_{jt})
(3) equilibrium	$(1) + (2) +$ firms choose nutritional content (w_{jt})

• We can calculate $\Delta CW = CW - CW(0)$ and decompose it into:

$$\Delta CW = \frac{1}{\mathcal{I}} \sum_{i} \frac{1}{\alpha_{i}} \sum_{j} \underbrace{\int_{\Delta \Theta_{jt}} \delta_{ijt} dP(\epsilon) - (\alpha_{i}p_{jt} + w'_{jt}\phi_{i}\lambda)\Delta s_{ijt}}_{\text{substitution effects}} \underbrace{-(\alpha_{i}\Delta p_{jt} + \Delta w'_{jt}\phi_{i}\lambda)s_{ijt}^{(0)}}_{\text{supply effects}}$$
where $\Delta x = x - x^{(0)}$ and $\Delta \Theta_{jtb} = \{i \in b : j \succeq_{i} k, \forall k \cap i : \exists k | j \not\equiv_{i}^{(0)} k\}$

• We study the effects of the policy under four scenarios:

Counterfactual	Description
(0) no intervention	No intervention
(1) demand only	Labels & no supply responses
(2) price response	(1) + firms choose prices (p_{jt})
(3) equilibrium	$(1) + (2) +$ firms choose nutritional content (w_{jt})

$$\Delta CW = \frac{1}{\mathcal{I}} \sum_{i} \frac{1}{\alpha_{i}} \sum_{j} \underbrace{\int_{\Delta \Theta_{jt}} \delta_{ijt} dP(\epsilon) - (\alpha_{i}p_{jt} + w'_{jt}\phi_{i}\lambda)\Delta s_{ijt}}_{\text{substitution effects}} \underbrace{-(\alpha_{i}\Delta p_{jt} + \Delta w'_{jt}\phi_{i}\lambda)s_{ijt}^{(0)}}_{\text{supply effects}} 0$$
where $\Delta x = x - x^{(0)}$ and $\Delta \Theta_{jtb} = \{i \in b : j \succeq_{i} k, \forall k \cap i : \exists k | j \not\equiv_{i}^{(0)} k\}$

• We study the effects of the policy under four scenarios:

Counterfactual	Description
(0) no intervention	No intervention
(1) demand only	Labels & no supply responses
(2) price response	(1) + firms choose prices (p_{jt})
(3) equilibrium	$(1) + (2) +$ firms choose nutritional content (w_{jt})

$$\Delta CW = \frac{1}{\mathcal{I}} \sum_{i} \frac{1}{\alpha_{i}} \sum_{j} \underbrace{\int_{\Delta \Theta_{jt}} \delta_{ijt} dP(\epsilon) - (\alpha_{i}p_{jt} + w'_{jt}\phi_{i}\lambda)\Delta s_{ijt}}_{\text{substitution effects}} \underbrace{-(\alpha_{i}\Delta p_{jt} + \Delta w'_{jt}\phi_{i}\lambda)s_{ijt}}_{\text{supply effects}}$$
where $\Delta x = x - x^{(0)}$ and $\Delta \Theta_{jtb} = \{i \in b : j \succeq_{i} k, \forall k \cap i : \exists k | j \not\geq_{i}^{(0)} k\}$

• We study the effects of the policy under four scenarios:

Counterfactual	Description
(0) no intervention	No intervention
(1) demand only	Labels & no supply responses
(2) price response	(1) + firms choose prices (p_{jt})
(3) equilibrium	$(1) + (2) +$ firms choose nutritional content (w_{jt})

$$\Delta CW = \frac{1}{\mathcal{I}} \sum_{i} \frac{1}{\alpha_{i}} \sum_{j} \underbrace{\int_{\Delta \Theta_{jt}} \delta_{ijt} dP(\epsilon) - (\alpha_{i}p_{jt} + w'_{jt}\phi_{i}\lambda)\Delta s_{ijt}}_{\text{substitution effects}} \underbrace{-(\alpha_{i}\Delta p_{jt} + \Delta w'_{jt}\phi_{i}\lambda)s_{ijt}^{(0)}}_{\text{supply effects}}$$
where $\Delta x = x - x^{(0)}$ and $\Delta \Theta_{jtb} = \{i \in b : j \succeq_{i} k, \forall k \cap i : \exists k | j \not\geq_{i}^{(0)} k\}$

Policy decomposition: (0) No intervention

Policy decomposition: (1) Demand only

• Consumers substitute towards healthier products

Policy decomposition: (1) Demand only

• Healthier products are cheaper and of lower taste

Policy decomposition: (1) Demand only

• Net increase in consumer welfare of 1.1% of total expenditure

Policy decomposition: (2) Price response

• Firms respond by increasing (decreasing) prices of unlabeled (labeled) products

Policy decomposition: (2) Price response

Policy decomposition: (3) Equilibrium

• Firms respond by reducing the concentration of regulated nutrients

Policy decomposition: (3) Equilibrium

• Reformulation comes with higher production costs that translate to higher prices

Policy decomposition: (3) Equilibrium

• Gains in consumer welfare are 70% larger than in (1)

Policy counterfactuals

- We then use the model to:
 - Study optimal policy design by varying the regulatory thresholds
 - Compare food labels to sugar taxes

• We focus on the case where calorie content is perfectly observed and only sugar content is regulated

Policy counterfactuals: Optimal threshold

- Optimal threshold without supplier responses: maximize labels informativeness
- Taking supply responses into account: optimal threshold pushed to the left

Policy counterfactuals: Optimal threshold

- Optimal threshold without supplier responses: maximize labels informativeness
- Taking supply responses into account: optimal threshold pushed to the left

Policy counterfactuals: Optimal threshold

- Optimal threshold without supplier responses: maximize labels informativeness
- Taking supply responses into account: optimal threshold pushed to the left

Policy counterfactuals: Sugar tax

- We compare the food labeling policy to alternative sugar taxes
- Firm's problem is now given by:

$$\max_{\{p_{jt}, w_{jt}\}_{j \in \mathfrak{S}_j}} \sum_{j \in \mathfrak{S}_j} (p_{jt} - c_{jt}(w_{jt}) - \tau w_{jt}) \cdot s_{jt}(\mathbf{p_t}, \mathbb{E}[\mathbf{w_t}])$$

• From the first order conditions, we have:

$$w_{jt}^{*} = \nu_{j} - (2\Lambda)^{-1}\tau$$

$$p_{jt}^{*} = c_{jt}(w_{jt}^{*}) + \tau w_{jt}^{*} + \Delta_{(j,\cdot)}^{-1}\mathbf{s}_{t}$$

• We denote by ψ the marginal value of public funds, and assume $\psi = 1$.
Policy counterfactuals: Sugar tax

• Soda sugar taxes in the US are equivalent to 0.3¢ per gram of sugar

Policy counterfactuals: Comparative statics

- The effectiveness of food labels and sugar taxes depend on
 - The presence of non-informational market imperfections (λ)
 - The marginal value of public funds (ψ)

Policy counterfactuals: Distributional consequences

- The progressivity of a policy depends on how the **benefits** and the **costs** vary across the income distribution
- Two key parameters:
 - **Sugar-income gradient**: when low-SES consumers prefer sugary products more, they are charged disproportionately higher taxes
 - **Misinformation-income gradient**: when low-SES consumers are more misinformed, the effects of food labels are better targeted towards them
- Food labels present distributional advantages when these gradients are positive

Beyond Cereal

- Our model sheds light on the effects of food labels on other categories
- Determinants of demand-side response:
 - Close substitutes goods (+)
 - Informativeness of labels (+)
- Determinants of supply-side response:
 - Expected demand-side responses (+)
 - Distance to policy threshold (-)
 - Cost of reformulation (-)
- We zoom out to other product categories to test these hypotheses
 - Soft drinks vs. cereal
 - Liquids vs. solids

Concluding remarks

1. Food labels can be an effective way to improve diet quality and combat obesity

- 2. Equilibrium forces are important
 - Price responses can undermine/augment the benefits
 - Reformulation increases healthiness at the expense of higher prices
- 3. Compared to sugar taxes, labels present advantages and disadvantages
 - More progessive and better targeted
 - Less effective against non-informational market imperfections
- 4. We should see more food labeling policies implemented in the future

Appendix: Regulatory thresholds

• The regulation is gradually tightened in three phases: June 2016, June 2018, June 2019

	Solids			Liquids		
Stage	S_1	S_2	S_3	S_1	S_2	S_3
Energy (kcal/100g)	350	300	275	100	80	70
Sodium (mg/100g)	800	500	400	100	100	100
Total Sugars (g/100g)	22.5	15	10	6	5	5
Saturated fats (g/100g)	6	5	4	3	3	3

• Some examples as reference:

per	Energy	Sodium	Sugar	Fat	# of
100 gr	(kcal)	(mg)	(gr)	(gr)	labels
Frosted Flakes	369	468	35	0.5	2
Cheetos	468	904	0.8	4.8	2
Snickers	488	189	47	13	3
Coca-Cola	44	10	10.5	0	1

Appendix: Change in total revenue

• Large substitution from labeled to unlabeled cereals

Appendix: Beliefs Survey

Papas

Fritas

Manzana

Uvas

- We asked consumers to insert cereal products between these reference products:
- Calories:

Muffin de

Arándanos

Galletas

Oreo

Dulce de

Leche

Appendix: Identification of μ_{jb}

• Change in beliefs when $\mu = \mu_1$

37 / 37

Appendix: Identification of μ_{jb}

• Change in beliefs when $\mu = \mu_2 < \mu_1$

Appendix: Identification of μ_{jb}

• Model gives different predictions for different values of μ :

Appendix: Sugar-income gradient

• If low-SES consumers prefer high-in-sugar products more, taxes will disproportionally charge them more

Appendix: Misinformation-income gradient

• If low-SES consumers are less informed, food labels will be better targeted

37 / 37

Appendix: Soft drinks vs. cereal

Appendix: Liquids vs. solids

Appendix: Liquids vs. solids

